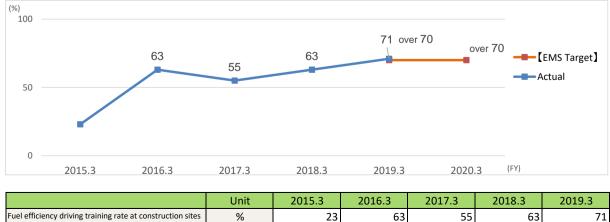
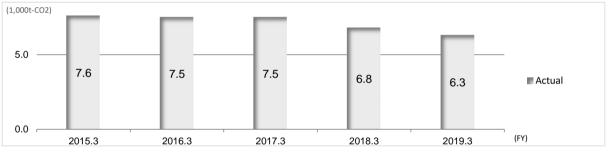

Reducing CO2 Emissions

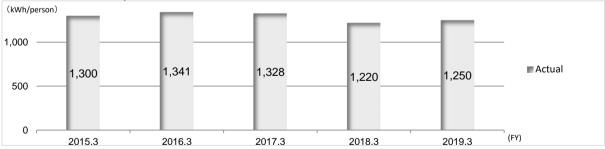

≪Composition of CO2 Emissions Sources at Construction Sites ≫

	Unit	2015.3	2016.3	2017.3	2018.3	2019.3		
CO2 Emissions Reduction at Constructio	n Sites							
Total amount of emissions	1,000t-CO2	220	217	190	211	186		
Amount of emissions per completed work	t-CO2/billions of yen	19	19	15	17	14		
CO2 emissions reduction rate *1	%	3.5	5.2	16.8	8.0	18.8		
Composition of CO2 Emissions Sources at Construction Sites								
Electric Power		27.9	24.7	29.1	28.4	31.5		
Diesel fuel		71.6	74.6	69.6	70.6	66.9		
Material/ Waste transport	%	18.3	22.4	21.3	24.7	25.1		
Drilling machinery	/0	22.5	24.3	25.5	23.5	18.5		
Other construction machinery		30.8	27.9	22.8	22.4	23.3		
Kerosene		0.5	0.7	1.3	1.0	1.6		

*1 base year 2014.3

Fuel Efficiency Driving Training Rate at Construction Sites


https://www.obayashi.co.jp/en/sustainability/upload/img/environment_aspect_data.pdf 1/12


CO2 Emissions Reduction of Designed & Build Buildings

	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Number of designed buildings	cases	52	63	57	42	35
Total area of designed buildings	m2	631,555	1,769,579	1,430,612	832,529	735,082
Amount of CO2 emissions reduced	1,000t-CO2/year	12.0	40.0	27.0	17.0	10.0
CO2 emissions reduction rate	%	29.7	27.3	22.9	25.8	19.8

Reduction at Offices (Applicable facilities: Head Office, Tokyo Main Office, Osaka Main Office and other branch offices) **CO2 Emissions at Offices**

Electric Power Consumption at Offices

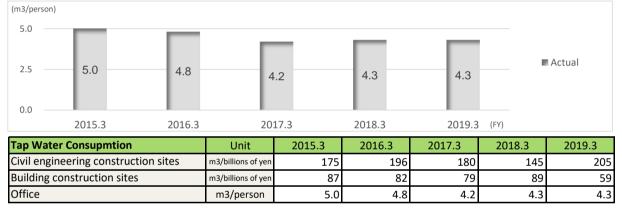
	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
CO2 Emissions at Offices						
	1,000t-CO2	7.6	7.5	7.5	6.8	6.3
Electric Power Consumption at Offices						
	kWh/person	1,300	1,341	1,328	1,220	1,250

Renewable Energy Generated

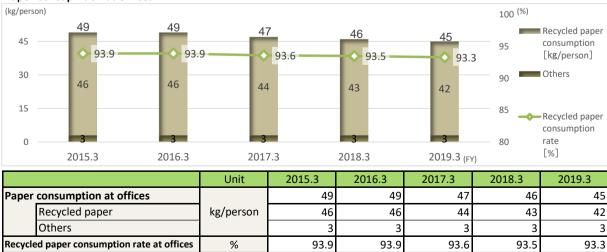
	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Renewable Energy Generated per year	MWh	69,335	89,414	97,516	161,686	201,353

 $https://www.obayashi.co.jp/en/sustainability/upload/img/environment_aspect_data.pdf 2/12$

Reducing Tap Water Consumption

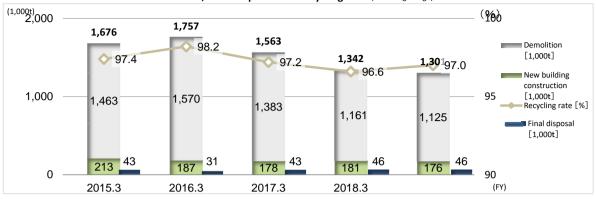

Tap Water Consumption Reduction at Construction Sites

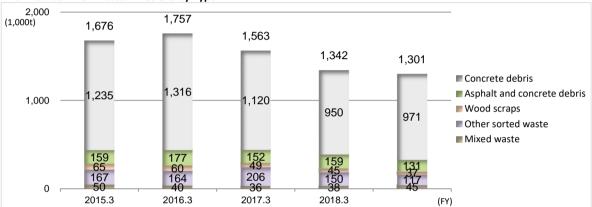
Tap Water Consumption (Building Construction Sites)



Tap Water Consumption Reduction at Offices (Applicable facilities: Head Office, Tokyo Main Office, Osaka Main Office and other branch offices) **Tap Water Consumption (Offices)**

Reducing Paper Consumption


Paper Consumption Reduction at Offices (Applicable facilities: Head Office, Tokyo Main Office, Osaka Main Office, other branch offices, machinery plants, material/equipment centers, the Obayashi Technical Research Institute)


Reducing Waste Emissions

Construction Waste Emission Reduction

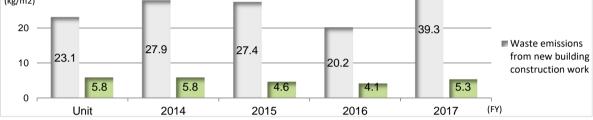
Amount of Construction Waste Emission, Final Disposal and Recycling Rate (Excluding sludge)

▼Breakdown of Waste Emissions by Type

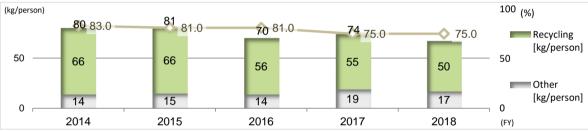
	Unit	2015.3	2016.3	2017.3	2018.3				
Amount of Construction Waste Emission, Final Disposal and Recycling Rate (Excluding sludge)									
Construction Waste Emissions		1,676	1,757	1,563	1,342	1,301			
New building construction	1,000t	213	187	178	181	176			
Demolition		1,463	1,570	1,383	1,161	1,125			
Final disposal	1,000t	43	31	43	46	46			
Recycling rate		97.4	98.2	97.2	96.6	97.0			
▼Breakdown of Waste Emissions by	Туре								
Construction Waste emissions		1,676	1,757	1,563	1,342	1,301			
Concrete debris	1	1,235	1,316	1,120	950	971			
Asphalt and concrete debris	1,000t	159	177	152	159	131			
Wood scraps	1,0000	65	60	49	45	37			
Other sorted waste	1	167	164	206	150	117			
Mixed waste	1	50	40	36	38	45			

<<Construction Waste Disposal/ Recycling Ratio by Type>>

		Unit	2015.3	2016.3	2017.3	2018.3	2019.3
	Final disposal		0.0	0.0	0.1	0.5	0.1
Concrete debris	Reduction	%	0.0	0.1	0.0	0.1	0.0
	Recycle and reuse		100.0	99.9	99.9	99.4	99.9
Asphalt and	Final disposal		0.0	0.0	0.1	0.1	0.2
•	Reduction	%	0.7	0.1	0.0	0.0	0.0
concrete debris	Recycle and reuse		99.3	99.9	99.9	99.9	99.8
Wood scraps	Final disposal	%	0.2	0.4	0.3	0.5	0.6
	Reduction		3.3	3.8	1.9	1.8	1.6
	Recycle and reuse		96.5	95.8	97.8	97.7	97.8
	Final disposal	%	19.0	13.6	16.1	21.0	23.1
Other sorted waste	Reduction		1.6	1.2	0.8	1.4	2.7
	Recycle and reuse		79.4	85.2	83.1	77.6	74.2
	Final disposal		22.7	21.5	24.6	25.0	39.0
Mixed waste	Reduction	%	5.6	6.1	5.4	6.3	4.2
	Recycle and reuse		71.7	72.4	70.0	68.7	56.8
	Final disposal		7.8	6.7	6.6	1.7	2.5
sludge	Reduction	%	27.8	33.4	27.8	25.5	25.8
-	Recycle and reuse		64.4	59.9	65.6	72.8	71.7

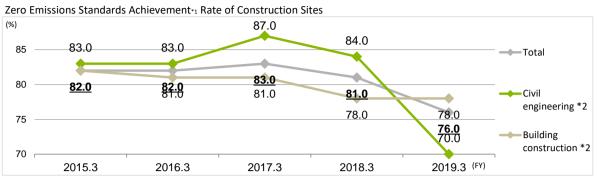

Construction Waste Emission Reduction of New Building Construction

Amount of Construction Waste Emission Reduction of New Building Construction per Completed Work (excluding sludge) (t/ billions of yen)


Construction Waste and Mixed Waste Emission of New Building Construction

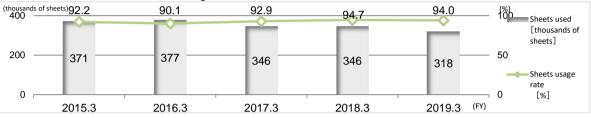
Amount of Construction Waste and Mixed Waste Emission per Floor Area from New Building Construction (Excluding sludge) (kg/m2)

General Waste Emissions Reduction at Offices

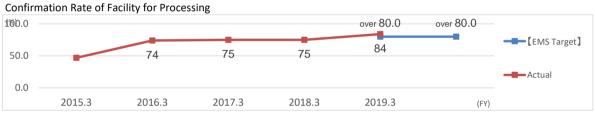


	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Waste emission per completed work (New Building Construction)	t/billions of yen	18.0	16.3	14.2	14.7	13.1
Waste emissions from new building construction work	kg/m2	23.1	27.9	27.4	20.2	39.3
Mixed waste Emission from new building construction	Kg/111Z	5.8	5.8	4.6	4.1	5.3
Amount of general waste emissions at office *1		80	81	70	74	67
Recycling	kg/person	66	66	56	55	50
Other		14	15	14	19	17
Recycling rate	%	83.0	81.0	81.0	75.0	75.0

*1 Applicable facilities: Head Office, Tokyo Main Office, Osaka Main Office, branch offices, machinery plants, material/equipment centers, the Obayashi Technical Research Institute


Emissions Reducing Management

Zero Emissions



Electronic Manifests Sheets

Electronic Manifests Sheets Used and Usage Rate

Confirmation of Facility for Processing

		Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Total			82.0	82.0	83.0	81.0	76.0
	Building construction *2	%	82.0	81.0	81.0	78.0	78.0
	Civil engineering *2		83.0	83.0	87.0	84.0	70.0
Electri	c manifests sheets used	thousands of sheets	371	377	346	346	318
Electri	c manifests sheets usage rate	%	92.2	90.1	92.9	94.7	94.0
Confirma	tion of facility for processing implementation rate	%	47.0	74.0	75.0	75.0	84.0

*1 Final disposal rate of construction Waste (excluding sludge) is below 5%. That amount of new building construction is below 5kg/m.

*2 Construction waste emissions (excluding sludge) below 1,000t of renewal construction and waste emissions (excluding sludge) below 10t of Civil Engineering Work is

Activities to Realize a Society that Respect for the Natural World

Based on Biodiversity Policy within our Environment Policy, we aim to realize a society that respects the natural world.

	Obayashi Biodiversity Policy						
1	Contribute in making a recycling oriented society which conserves biodiversity.						
2	Develop and make full use of new technologies to conserve biodiversity.						
3	Promote sustainable society which reduces the impact on ecosystems.						
4	Conserve biodiversity through self-owned facilities.						
5	Communicate with the society to create a society in harmony with nature.						
6	Educate and Promote biodiversity.						

Green Procurement of Construction Equipment

Green Procurement Rate of Construction Equipment

Calculation formula:

Green procurement rate

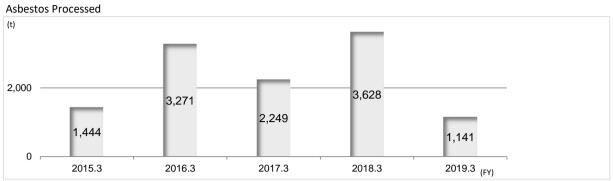
Green procurement: Green procurement cost divided by total cost of construction equipments

%

Grenn procurement include (treated soil, construction waste soil, recycled concrete aggregate, recycled asphalt and concrete, blast furnace cement concrete, blast furnace raw concret, steel scrap, polycarbonate (Precast concrete)

47

49


41

43

43

Chemical Substances Management

Asbestos

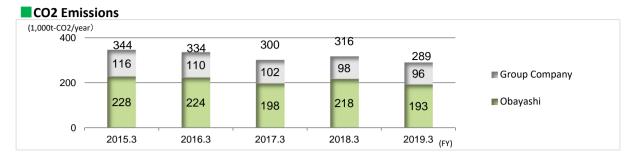
CFC and Halon Gases

CFC and Halon Gases Collected and Processed

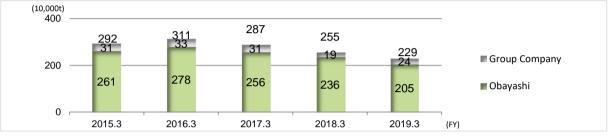
	Unit	2015.3	2016.3	2017.3	2018.3	2019.3		
Asbestos Processed								
Amount processed	t	1,444	3,271	2,249	3,628	1,141		
CFC and Halon Gases Collected and Processed *1								
CFC and Halon Gases Collected and Processed		15.8	7.9	8.9	2.9	4.9		
CFC gas	t	13.0	7.9	8.7	2.8	4.1		
Halon gas		2.8	0.0	0.2	0.1	0.8		

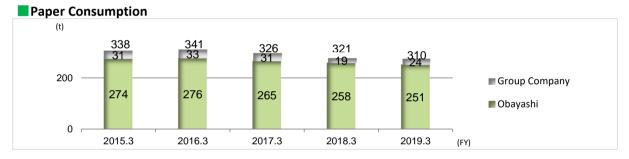
*1 Amount of recycled CFO gas and Halon gas was 0.9t and the amount of disposed CFO gas and Halon gas was 2.0t in FY2018.3.

PCB


Removal*2 of PCB waste materials*3

	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Capacitors	Units	2	133	140	0	0
Transformers	Units	0	0	0	0	0


*2 Methods for the storage and disposal are regulated by law because these materials contain polychlorinated biphenyl (PCB), which is a toxic substance.


*3 PCB waste materials must be transported to Japan Environmental Safety Corporation, the company designated by the government of Japan.

CO2 Emissions Reduction

Construction Waste Emissions

		Unit	2015.3	2016.3	2017.3	2018.3	2019.3
CO2 E	missions		344	334	300	316	289
	Group Company	1,000t-CO2	116	110	102	98	96
	Obayashi		228	224	198	218	193
		Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Constr	uction Waste Emissions		292	311	287	255	229
	Group Company	10,000t	31	33	31	19	24
	Obayashi		261	278	256	236	205
		Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Paper	Consumption		338	341	326	321	310
	Group Company	t	64	65	61	63	59
	Obayashi		274	276	265	258	251

Scope of Group companies (Exclude companies for which separate data does not need to be collected, such as companies that operate within Obayashi offices) [Construction Business] Obayashi Road Corporation, Naigai Technos Corporation, Obayashi Facilities Corporation, Oak Setsubi Corporation,

Tokken Corporation, Soma Environmental Service Corporation, ATELIER G&B Co., Obayashi Design Partners te Business] Obayashi-Shinseiwa Real Estate Corporation

 [Real Estate Business]
 Obayashi-Shinseiwa Real Estate Corporation

 [Other Businesses]
 <Information> Oak Information System Corporation

 <Golf course> Ibaraki Green Co., Ltd.
 <Restaurant> Le Pont de Ciel Co., Ltd.

 <Renewable energy generation> Obayashi Clean Energy Corporation

Environmental policy includes support for Group companies in order to lower the environmental impact of the entire Obayashi Group. In line with this policy, the Group Company Environmental Activity Liaison Conference was formed to deal with issues for the entire Group. In addition, individual companies use their business activities for developing recyclable materials and increasing their use, combating the heat island effect, conserving energy for building operations, and other purposes.

Results of External Assessment of EMS

		2018.3			
Certification body		Japan Testing Center for Construction Materials			
Implementation period		From June 24 to August 1, 2018			
Assessed items		Head Office, Tokyo Main Office, Nagoya Branch, Shikoku Branch, Hokuriku Branch, Technical Research Institute,			
		Tokyo Machinery Works			
Number of deficiencies	Serious deficiencies	0 case			
	Minor deficiencies	0 case			
Number of items under observation		0 cases			

Results of Internal Audit of EMS

			2019.3			
Audited items			All branches and departments			
Number of audits			253cases / 250cases (101%			
	Permanent divisions	Planned/ Implemented	53cases/53cases(1009			
	Construction offices	(Implementation rate)	191cases / 188cases (101%)			
	Secretariats		9cases∕9cases(100%)			
Number of inter	rnal auditors (active))	482peop			
Number of define	ciencies		4cas			
Number of item	is under observation	1	149cas			

Environmental Targets and Results

Environmental Terreta	Linit		2015.3	2016.3	2017.3	2018.3	2019.3			2020.3
Environmental Targets	Unit		Actual			EMS Target	Actual	Evaluation	Target	
Reducing CO2 Emissions										
CO2 emissions reduction rate from construction sites (base year 2014.3)		Low-Carbon	3.5	5.2	16.8	8.0	over 8.0	18.8	0	over 15.0
CO2 emissions reduction rate of designes & build buildings*1	%		30	27	23	26	over 25	20	×	over 25
Fuel efficiency driving training rate at construction sites			23	63	55	63	over 70	71	0	over 70
Reducing Resource Consumption										
Water consumption at construction	m3/billions	Recycling- Oriented	Civil: 175	Civil: 196	Civil: 180	Civil: 145	Civil: below 170	Civil: 205	Δ	Civil: below 170
sites	of yen		Building: 87	Building: 82	Building: 79	Building: 89	Building: below 85	Building: 59		Building: below 85
Reducing Waste Emissions										
Amount of construction waste emissions (excluding sludge) per completed work from new building construction work	t/billions of yen	Recycling-	18.0	16.3	14.2	14.7	below 14.0	13.1	0	below 14.0
Confirmation rate of facilities for processing	%	Oriented	47	74	75	75	over 80	84.0	0	over 85.0
Implementing Green Procurement										
Green procurement ratio for construction materials and supplies *2	%	Others	47	49	41	43	over 55	43.0	×	over 55

Legend and Notes

O: Targets achieved

 Δ : Targets have yet to be achieved, but results have improved from the previous fiscal year

× : Targets have yet to be achieved

*1 Figure represent comparisons with the CASBEE reference values, with the scope of aggregation including all building uses.

*2 The ratio of the green procurement value to the total procurement value of all monitored items for the green procurement ratio.

Deficiencies and Complaints

Items	Unit	2015.3	2016.3	2017.3	2018.3	2019.3
Deficiencies	cases	6	0	1	6	2
Claims	cases	828	891	1,056	1,229	622

Obayashi designates items as deficient and requiring management in the following cases:

Note that we strive to prevent conflicts for reoccurring by aptly responding to the complaints we receive and caring for the environment surrounding our sites.

When administrative guidance has been received

When a civil fine must be paid

When a written apology must be submitted
When there is compensation payment

• When there is a penalty involving more than a small fine

· When a government agency has submitted a recommendation to take corrective actions

2 deficiencies of 2018 were used industrial waste disposal carrier with expired permission.

We have submitted a remedial report for updating the permission, and placed the outline of the contract in the construction site so that all employee can check the expiration date.