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Abstract

This report describes the results of an investigation to develop an analytical method for the
nonlinear behaviors and strengihs of three-dimensional reinforced concrete structures such as prest-
ressed concrete nuclear reactor wvessels (PCRV) under monotonically increasing internal pressure.
The mathematical model for concrete has the following features. A model of a ““dual failure criterion’’
was adopted to simulate the failure surface for all stages of stress. That is, (1) in compression,
Sailure is controlled by a generalized Drucker-Prager criterion proposed, satisfying convexity and
continuity conditions, and (2) in tension-tension and tension-compression, the cracking criterion
reflects the effect of the intermediate principal stress by use of the tension cut-off criterion. A
method of modifying the effect of microcracking in compression on nonlinear response was incorpo-
rated in the yield criterion by wuse of an exponential approximation function in terms of current
stress state and equivalent plastic strain. A nonlinear finite element computer program was estab-
lished in a suitable form for general use incorporating the mathematical model proposed. Three
numerical examples, such as two-, three-dimensional, and axisymmetrical problems, were analyzed
to investigate the feasibility of the procedure developed. Good agreement between experimental and
analytical results was obtained. As a result, it was found possible to predict the nonlinear responses
of massive reinforced concrete structures like PCRV.

1. Introduction
With the recent remarkable advances in finite element techniques together with the pro-
gress of high speed digital computers and many though insufficient experimental investigations
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on the material phenomena of concrete under multiaxial stress state, three-dimensional nonlinear
analysis procedures of the PCRV have been proposed by assuming mathematical models for
concrete on the basis of the available limited experimental data and comparing the calculated
results with the PCRV test results. Nevertheless, the applicability of most analytical methods
for general use are still questionable by the reason that few of these have been applied to
many PCRV models because of economics. Moreover, there is no generally accepted constitu-
tive law to characterize the nonlinear response of concrete under multiaxial stress state in all
stages of loading.

The object of this investigation is to provide an analytical procedure which can predict the
nonlinear response of PCRV to accidental overpressurization over a short period of time. The
analytical method developed is three-dimensional and uses a material model, related to the
elastic-plastic theory, proposed here for the nonlinear response of concrete under multiaxial
stress state.

2. Constitutive Modeling for Plain Concrete under Multiaxial Stress State

A few experimental investigations on the strength and deformation behavior of concrete
under multiaxial stress state have been carried out (1,2,3,4). There are still many questions
unanswered regarding the accuracy of these results. However, from the limited data, the shape
of failure surface has been considered to be as shown in Fig. 1 in the deviatoric, hydrostatic
and rendulic sections. Basically the failure surface is a conical surface with curved meridians
and monlinear cross sections in which the shape is trigonal in tension while a cylindrical
shape is approached in the limit in compression (2, 3).

2.1. Failure Surface

Various forms of expressions for the failure surface are currently used for the non-linear
analysis of reinforced concrete structures (5,6). There are in general two existing ways for the
description of failure surface; a model which simulates the surface by a single function, and the
other which is a model with two-independent functions dividing the surface into two parts (tension
and compression zones). The latter, the so-called “dual failure criterion”, is considered to be
more reasonable than the former because of capability for the description of the surface by
simple functions. Here a model based on the dual failure criterion will be developed to make
the description simple and realistic.

Because of the triple symmetry at the principal stress axes as shown in Fig. 1.b, only a
sixth of the surface has to be considered. Hence, it is specified that the principal stress com-
ponents are ordered such that ¢,=>0,>0, and tensile stress is taken as positive. It can, in
general, be assumed that the failure surface passes through five points (A, B, C, D, E) as
shown in Fig. 2 in the hydrostatic plane (5). In this plane the full range of the surface
may be divided into two zones; (I) compression zone above line AB and (II) tension-tension
and tension-compression zones below line AB.

2.1.1. Compression-Compression Zone (I) Equation (1), named a generalized Drucker-

Prager failure criterion, is proposed as an approximate description of the surface in compres-
sion zone.

F \/J 2 F Y —
c-—CKJI_[__‘.(A‘)_*K(@’g Y=0 ¢))
- 1
where 104 REICL S (puiB—1)

B=material constant of ratio of radii at 0=0° and 60° in the deviatoric section,
0.5<p<1.0.

7, =material constant of ratio of biaxial compressive strength, f;, to uniaxial
compressive strength £/, i.e. 7,=/3/f
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J1,J s Jy=first, second and third stress invariants, respectively.

1 1 Y Y
Ji=01+0,+0y, Jz:"é"SijSij, Jaz"g“bijksjkski

Si;=stress deviator tensor

g(0)=a hyperbolic interpolation function assumed in the deviatoric section,
satisfying the continuity and boundary conditions, written as

2(1—B%cos 0— (2—B) [2(8*—1) (1-cos 26) +5—48]"> @)
2(0=F% (1+cos 26) — 2—p)?

g(0)=p

K (0, &) =equivalent stress depends on the current state of stress and plastic strain.

The surface described by Eq. 1 projects as a straight line along the meridian and as a
noncircular shape on the deviatoric section. Note that if #=1.0, Eq.l degenerates to the well-
known Drucker-Prager yield criterion, and if 8=7,=1.0, Eq. 1 degenerates to the Von Mises
yield criterion widely used for metal. The value of B, however, should be determined so that the
function of Eq. 1 may simulate the variation of experimental data from compressive branch (0=0°)
to tensile branch (6=60°) obtained by hydrostatic tests of plain concrete. According to the
recent studies (2, 3, 4), the value of £ is in the range between 0.7 and 0.8. Choice of the
value also depends on whether it is failure in tension or compression range that should be
simulated more closely. A value of $=0.75 gives a rcasonable approximation in full range.
Comparisons of the failure surface given in Eq. 1 with value of 8=0.75 and the available ex-
perimental results are shown in Fig. 3, 4.

2.1.2. Tension-Tension and Tension-Compression Zones (II) Because the tensile strength,
fi/s is about an order of magnitude less than f,” and its failure is brittle, the nonlinear response
of concrete structures are attributable primary to the tensile failure (cracking). The maximum
principal stress (or strain) theory and Mohr-Coulomb theory have been frequently used to
describe the failure. Current research on the tensile failure surface is moving toward the develop-
ment of that including the effect of intermediate principal stress (5). Here, a tensile failure
model taking account of this effect is proposed, which consists of two surfaces, one for tension-
tension and the other for tension-compression zones with triangular shape in the deviatoric
section. The model is defined by means of the octahedral shear and normal stresses and 6
as
Ipti:rocc'—'{a" T TAiTBi'
[T 44 sin 0+ 7 p; sin (60— 0)

] =0 (¢=1,2) )

where the terms of ¢4y, vp; are the extreme fixed octahedral shear stresses, corresponding to the
meridians at §=0° (line ACE) and 0=60° (line B'DE), respectively (Fig. 2). These can be
written in terms of the current o,

Tai=A0n+Ap, Tp=DB;0,+ By, (=1,2) 4)
Subscript ¢ denotes that the function in case of i=1 indicates the surface for tension-
compression zone where it passes through four points (A4, C, B/, D), and in case of {=2 indicates
the surface for tension-tension zone where it passes through three points (C, E, D) as illustrated

in Fig. 2. The constants can be easily determined from the figure.
For tension-compression zone (i=1)

Ap=v2B,—1)/(2B,—1), Ay=H2+4,)/3
By=V2(ny— B0/ Bx—By), By =v279,/3— %8B, %)
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For tension-tension zone ({=2)
App=—v2, Ap=1V20F;, Bio=—1/V2, Byy=8,/2 ®)

In the formation of Eq. 2, some consideration should be made for tension-compression
zone. Point B’ in Fig. 3 must be used in F}; instead of point B, because adopting B makes
the surface concave as a model in Ref, 5. By the study of Ref. 7, the coordinate of point B’ in
Toet—0m plane is approximately (x=—0.7~—0.6, v2/3/79,). After some examination the value
x=—0.65 gives better fit to experimental data. Note that the shape of Fy, is an equilateral
triangle in the deviatoric section and this assures that the tensile failure surface never exceeds
the tensile strength for any state of stress.

Consequently, the failure surface for full range can be determined by the function which
reaches zero first among the three (F,, Iy, Fyy) in Eq. 1, 3. The characteristics of the failure
surface proposed are figured by combination of the three independent functions in Fig. 5.

2.2. Incremental Stress-Strain Relationship in Compression

The model based on the elastic-plastic theory has been widely adopted for general use to
describe the nonlinear behavior of reinforced concrete because of simplicity, systemized formula-
tion of the constitutive law, and existence of reasonable results except in a certain limited stress
region. The incremental stress-strain relationship developed is also based on the elastic-plastic
theory with the basic assumptions that (1) the initial and subsequent yield surface are similar
to the Generalized Drucker-Prager failure function given in Eq. 1, and (2) simple work harden-
ing associated with the Reuss’s flow rule, and can be written in the form

{do} = Der {de} o
oo {32} [ D+ {524 51

where D¢ is the elastic strain to stress transfer matrix, the term F’ is effective strain hardening
coefficient. The rate {0F/00¢} is the gradient vector of stress components and can be convenient-
ly expressed as

{@ff} oF {@J 1} 24 {W z} L or {,QJ..@}
0o 0J, | 0o
where scalars 0F/0J,, 0F/0J, and 0F/0J, are the partial derivatives of yield function with
respect to the three stress invariants and, therefore, their values depend on the feature of
yield function. Rates {8J,/00}, {0J:/00}, and {0J,/00} are the gradient vectors of stress
invariants. A strictly determinate form of the stress-strain relationship in nonlinear range can
be obtained from Eq. 8 if explicit expression of the equivalent stress K in Eq. 1 is known.

@

2.3. Nonlinear Response of Concrete

Once the relation between the equivalent stress and the equivalent plastic strain, &, is
defined, the strain hardening coefficient, H’, along the ascending branch can be uniquely
defined as

_ 0K
=9

In plasticity, the equivalent stress-strain relation has to be a single nonlinear curve. On the
other hand, the experimental curves under biaxial stress are shown in Fig. 6 as plotted in
Ref. 8. It can be observed that the curve at 6=60° gives much larger strain than that at 0=0°
at the same stress level. This phenomenon is mainly caused by the effect of microcracking on
nonlinear behavior of concrete, an effect which increases with increase in the ratio of biaxial
stresses. This suggests that the approximation with a single curve could not simulate the exact

H 1o
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nonlinear response as demonstrated in Ref. 9. This problem could be overcome by introducing
a model of an effective equivalent stress-strain relation that depends on the Lode angle as well
as the equivalent plastic strain. This model can be taken into account in the incremental
scheme so as to simulate the effect of microcracking as shown in Fig. 7. An assumed influence
of the Lode angle on the K—&, relation is represented analytically first by defining the shape
of the curves for 6=0° and 60°, and then specifying a function to interpolate between these
curves as described in the following paragraph.
An exponential function was defined to modify the curves for 6=0° and 60° as

Ki=a(l—e %) -+b for 0=0°
Ky=a(l—e %)+ b for 0=60° an
where a, b, ¢, and ¢, are material constants and can be determined so as to coincide with the
experimental stress-strain curves under uniaxial and biaxial compression using the boundary
condition and initial yield strength, f;, as
a=1/B~a)(f'—f0), b=f1/8-a)
a=Hy/a, c=Hy/a (12)
The constants H, and Hj, are the effective strain hardening coefficients at §=0° and 60° on
the initial yield surface, respectively.

For a given state of stress in the region of 0°<6<60° a cosine interpolation function for
the description of K in Eq. 1 is proposed in the form

K,+K, K —-K

5 5 2. cos 30 13)

K(0,8,) = +
which satisfies continuity with respect to 6 and §&,.

Note that Eq. 13, by its characteristic, is asymtotic to K=f,"(1/¥3—a) if §;~>co.

Therefore, the term K at the maximum plastic strain involves a small error on the re-
sponse, but this amount is negligible.

Now, by substituting Eq. 11 into Eq. 13 and differenciating it, the effective hardening coef-
ficient H” for a given state of stress and strain can be derived as

I{/:%[Héle“c’ép + Higemes®r 4 (Hye~ % — Hiye“5%») cos 30] (19

In addition, the three scalar values of the invariant derivatives defined in Eq. 9 can, now,
be obtaind after some transformation as

or _ .

oJ,

oF 1 ()] 3 - .

or_ 1 ~ 0| +-2—(K,~K 5
a7, 2«/J2g(0)[1 g (6) cot3 :\+4J2 (K, 2) cos 30 (15
or V3 g’ () 3 N

..... - - — (K, — K

0T, o, [g(@)‘zsinzaa4 VA 2)}

where ¢/(0) is partial derivative of g(f) with respect to 0.

The value of the maximum equivalent plastic strain £,(0) for 0°<Z0<60° can be also inter-
polated by a similar function for K using the extreme values (§,°, §&,°) at 6=0° and 60°. That
is

8,5 (6) =5 [146 + (1) cos 301, (16)

where the term ¢ is the ratio of the equivalent plastic strain at 6=0° to that at 60° (see Fig.
6, 7).
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It remains to define the rules for unloading. Unloading criterion is that if the equivalent
plastic strain increment dg, is negative, unloading has occurred at the corresponding point.
Once unloading has occurred, the equivalent stress, K,,,, and plastic strain, &, have to be
remembered and the elastic stress-strain relation is recovered for further loading untill the stress
level again reaches K,,,. If K returns to K., nonlinearity reverts back tofollowing the rules for
monotonically increasing load as illustrated in Fig. 7. However, the value of 0 is usually different
from that of 6,,. So the curve from the reloading point (K., &%) should be changed with
the change of the stress state between pre- and post-unloading.

Concerning a modeling of the descending (or softening) branch after the compressive
strength, the same method proposed in Ref. 10, 11 was adopted by extended use for multi-axial
state of stress.

The proposed model of the equivalent stress-strain relation can be made visible as shown
in normalized stress versus strain for the concrete in Ref. 12 in Fig. 8.

2.4, Cracking

Cracking of concrete has the most important and significant effect on the nonlinear response
of reinforced concrete structures as mentioned in the previous section. Methods of modeling
of cracking has been getting firmly fixed by recent studies (6, 8 9, 10, 11) even though several
problems are still remained unsolved. Several assumptions were made in order to analyze the
progressive cracking of concrete for any loading history and discussed below.

(1) A crack forms in a plane normal to the direction of the maximum principal stress
when the stress state exceeds one of the brittle failure surfaces given by Eq. 3. All
forces corresponding to the maximum principal stress is redistributed to the system,

(2) Once a crack has formed, the tangent modulus in the direction perpendicular to the
crack plane is reduced to a negligibly small value to avoid numerical instability of
the stiffness matrix of the system. The shear modulus in the crack plane is set to
be a preselected constant such that 0.<y4<1.0 where 74 is a shear retention factor
due to aggregate interlock.

(3) As the load increases, further cracks can occur when the brittle failure conditions of
Eq. 3 are exceeded. Three crack planes are possible at each stress evaluation point.
In addition, crack closing is examined at every crack plane by means of strains.

3. Numerical Solution

Several procedures were successfully employed in the numerical solution so as to make

the expected results refined.

(1) Steel is assumed to be an elastic-plastic strain hardening material related to the
well-known Von Mises yield condition allowing elastic unloading.

(2) A method of discrete idealization of reinforced concrete structures was incorpolated
in a suitable form for the computer program which utilizes 20-node brick element,
8-node membrane element, and 3-node axial element.

(3) A reduced numerical integration scheme with independent choice of integration
points (2 or 3) in any direction in each element.

(4) The method of Euclidian displacement and force norm as a convergence criterion
together with the modified Newton-Raphson procedure.

(6) Numerical refinements in determination of stress increments such as Nayak’s over-
shoot method to examine what kind of failure firstly occurs by new stress increment,
and stress correction due to drift from the yield surface.

4, Numerical Examples

Three numerical examples were analyzed to investigate the feasibility of the nonlinear
analysis developed. The first case was calculation of the two-dimensional response of the plain
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concrete, to be compared with the data from Ref. 12. The second case involved the analysis
of a small-scale axisymmetric PCRV test model with a solid end slab (Fig. 10). The third was
the analysis of a three-dimensional PCRV test model with penetrations in the end slab (Fig. 10).
The PCRV test models have been tested to investigate the shear failure of flat end slabs of
PCRYV under increasing internal pressure at the Structural Research Laboratory of the Univer-
sity of Illinois (13). Properties of materials used are listed in Table 1.

4.1, Biaxial Stress State

The analytical and experimental stress-strain relations under uniaxial and biaxial com-
pression are compared in Fig. 9. It can be said that the failure and yield criteria proposed
are acceptable for the approximation of nonlinear response of biaxial concrete.

4,2, Axisymmetric PCRY Test Model (Solid End Slab)

Fig. 11 illustrates the finite element mesh including the steel base plate in a 30-degree
slice of axisymmetric PCRV test model designated PV28. Unbonded vertical steel tendons were
simulated by external forces which were varied during the loading process to account for changes
in stress. Computation time for this model with nine load increments and a maximun of four
iteration cycles for each increment was about 280 sec on the CDC Cyber 175.

Pressure-Deflection Curves: Figure 12 shows the comparison of the measured and calculated
deflections at the center of the end slab. The calculated initial tangent stiffness was slightly
less than the measured one. The first cracking occurred in the radial direction of the end slab
at 1.5 ksi (10.3 MPa) internal pressure. The calculated small decrease in the slope of pressure-
deflection curve beyond 1.5 ksi was due to gradual development of “internal cracks”. The
observed failure pressure was 3.77 ksi (26.0 MPa), 7% more than the calculated value of 3.5 ksi
(24.1 MPa).

Calculated Damage Pattern: Internal damage patterns of concrete at three pressure levels
(2.5, 3.25 and 3.5 ksi) are shown in Fig 13. Damage patterns in this figure were modified by
“smearing” the failure index information at each integration point over a tributary region half
way to the next integration point. The calculated damage patterns provide a useful guide to
interpreting the internal failure process of structure.

Deflected Shape: Calculated deflected shapes of PV28 are shown in Fig. 14 for three load
levels of pressure. Solid lines in this figure indicate the original shapes and broken lines in-
dicate the deflected shapes in exaggerated scale. Changes in the shape of PV28 with internal
pressure can be clearly seen from this figure.

4.3. Three-Dimensional PCRV Test Model (End Slab with Penetrations)

Figure 15 shows a finite element mesh and the prestressing forces for the analytical
model which represents a 30-degree section of a PCRV test model designated PV32 in Ref, 13.
The load corresponding to the pressure on the cross section of the penetration applied to the
finite element model as an equivalent line load around the circumference of the opening. Com-
putation time for PV32 with ten load increments and a maximum of three iteration cycles at
each load increment was approximately 400 sec.

Pressure-Deflection Curve: Figure 16 compares the experimental and calculated deflections
at the center of end slab. Very good agreement between the experimental and calculated de-
flections was obtained throughout the entire loading ranges. The calculated maximum pressure
was 2.95 ksi (20.3 MPa), while the experimental failure pressure was 3.08 ksi (21.3 MPa) cor-
responding to a 4.0% difference in pressure between the physical and the analytical models at
failure.

Calculated Damage Pattern: Calculated damage patterns of concrete at two pressure levels
(2.5 and 2.95 ksi) in two different vertical cross sections are shown in Fig. 17, 18, Cracking
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initiated radially at the upper center of end slab at 1.5 ksi (10.3 MPa) and progressed along
the upper surface with the increase of pressure. Yielding in compression firstly occurred at
the midheight portion of the penetration at 1.5 ksi and developed vertically downward. From
the figures of the final damage patterns, the concrete around the penetration was severely
damaged in both sections. Crushing of concrete, where the equivalent strain entered in the
range of “descending branch”, was caused in some regions of section A—A. It can be referred
from the calculation that the strength of the test vessel would be limited by cracking and
crushing failure of the concrete around the penetration.

It is of interest to compare the damage patterns near maximum pressure for PV28 and
PV32. While the distribution of damage over the section of PV28 was general and the dome
thrust line could be seen, the damage in PV32 was concentrated at or near the section of the
penetration.

Deflected Shape: The deflected shape of PV32 at representatives of pressure are shown in
three-dimensions in Fig. 19. Distorsions which occur before failure are emphasized in the
figure suggesting that the nonlinear response of this model was influenced strongly by the
failure of concrete around the penetration.

5. Conclusgion

This report develops a three-dimensional finite element model for simulating the non-
linear response of reinforced concrete structures such as PCRV’s under monotonically increasing
internal pressure.

The analytical model has been tested using experimental results from (1) plain concrete
tested under biaxial compressive stresses, (2) test of a cylindrical prestressed concrete pressure
vessel model with a solid end slab, and (3) test of a similar vessel with an end slab containing
penetrations.

Comparisons between the experimental and calculated results were satisfactory in each
case in spite of the relatively coarse mesh. Though the shear retention factor in a cracked plane
was assumed to be zero for all cases, the calculated responses of the test vessels indicated good
agreements with the experimental results.
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An analytical method for three-dimensional nonlinear responses of PCRV.

Concrete Properties in psi (MPa)
Two~Dimensionl Axisymmetric Three-Dimensional
Plain Concrete (2) PV28(13) PV32(13)
E1 4.28 X 108(227,500) 3.9%10°%( 26,900) 3.8%10% 26,900)
E: —0.85 % 10%(—5,900) —0.85X 10%(—5,900) ~-0.85 % 10%(—5,700)
£ 4,650(32.1) 6,420(44.3) 5,720(39.4)
A 430( 2.96) 440( 3.0) 450( 3.1)
& 0.00216 0.0028 0.00263
& 0.00137 0.0018 0.00178
Jfo=05f;, a=09f, »=116, 8=0.75,
Constants
£=30, v=015, 76 =0.0 (shear factor)
Steel Properties for PV28 and PV32 in psi (MPa)
Liner and Base Plate Vertical Tendon Circumterential Wire
E 30%10%(210,000) 29 % 10%(200,000) 30%10%(210,000)
Eu 0.05E1 0.04Ex 0.04E1
ay 40,000(275) 140,000(961) 280,000(1,940)
v 0.3 0.3 03
¢ initial —_ 0.0035 0.004
Table 1. Properties of materials assumed for analysis

Pressure = 2.5ksi

Pressure = 3.25ksi
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