Comfortableness in the Super Energy Conservation Building
(Main Building of Ohbayashi Corporation Technical Research Institute) (Part 3)
——Survey by Measurements and Questionnaire in Second Year of Occupancy——

Machiko Watanabe
Tatsuo Oka
Tatsuaki Tanaka
Masayuki Ishioka

Abstract
This paper describes measurement and questionnaire results concerning quality and comfortableness in living spaces in the second year after completion of the Main Building of Ohbayashi Corporation Technical Research Institute—the Super Energy Conservation Building. Room temperatures in summertime are between 23 and 26°C with relative humidity at 60 percent, and between 18 and 22°C in wintertime with relative humidity at 40 percent. Concentrations of CO, CO₂ and dust particles are all less than the limits in building codes in Japan. The results of a questionnaire show that synthetic room environments such as temperatures, humidities and light are being kept at desirable levels, and it is expected that the present conditions can be maintained in the future.

概要
本報は、竣工後1年目の室内環境に引き続き2年目の調査を行いなされたものである。夏季の室温は23〜26°C、湿度が60°C、冬季では18〜22°C、湿度40％に維持されている。室内のCO、CO₂、粉じん濃度はいずれも基準値以内に収まっていている。2年間のアンケート調査によっても室内の温度、明るさなど総合的な室内環境は十分良好に保たれており、今後この程度の状況で維持していくことも予想された。

1. はじめに
技研本館が昭和57年4月に竣工して以来すでに3年を経過している。竣工後1年目の産物の1次エネルギー消費率は、延床面積当り86.7 Mcal/m²年、2年目では95.9 Mcal/m²年となり当初の予測値であった98 Mcal/m²年をいずれも下回っていた。温度やCO₂濃度、粉塵濃度など室内環境においても、一般的な事務所ビルと同様あるいはそれ以上に良好なものとなっていた。

本報告は、1年目から引き続き2年目における室内環境を測定するとともに実調と居住者にアンケート調査を実施して、良好な居住性が確保されていることを在館者の意識の面から明らかにしようとしたものである。

2. アンケート調査結果
木建物の内観では、省エネルギー時代の新しいオフィス形態を指向する上で様々な建築計画手法が採用されている。ここではこのような手法によって構成された独居環境の居住性を把握するため、昭和57年8月に昭和59年2月と定期的にアンケート形式による調査を行なってきた。今回、竣工後2年目におけるアンケートを実施し、利用者の室内環境に対する感覚あるいは考え方の変化を追跡調査したものである。

アンケート調査は昭和59年7月16日〜26日に本館に在
籍している122名を対象とし、男性は全体の79％が男性、残り21%が女性である。在席者の在席分布はBIF7人、1F17人、2F46人、3F50人である。表-1に結果を示す。

(1) 室内温度
半数以上が良好と回答している。温度調節については、3Fの在席者に悪いと回答している割合が比較的多い。実際に測定してみると冬季において3Fが他の階に比べて多少低い室温となっており、空調停止後の室温低下も他の階に比べて大きいために、アンケート調査にこのような回答として現われたものである。

(2) 湿度
湿度については、良好と回答する割合が多く測定結果も40％以上で現れた。

(3) 気流
ダクトの吹出口、ファンコイルユニットからの気流、ドアの開閉についてもほとんどの人が気にならないと答えており、良好な状態にある。

(4) 室内の明るさ
机上面ではなく、全体的に明るさであるが、不満足という回答が20％に達している。個々を面談してみた結果、妻の間の問題があるが健康上の問題になっているわけではない、多分に悩みの問題であることが示された。その他、カーペットの使用、就労スペースについては比較的満足であるという回答が得られている。

竣工後1年目と2年目のアンケート結果を比較してもほとんど変化がなく、今後この程度の状況で推移していくものと考えられる。

3. 室内環境

3.1. 室内温度
冷房期間および暖房期間における乾燥温度の度数分布を図-1、2に示す。夏季の室温は23～26℃、冬季は19～23℃に維持されており、いずれも設定目標を満たしていた。1年目と2年目を比較すると、ほとんど同様の結果となっており、むしろ各階による相違の方が大きい。冬季における室温が1Fと3Fが他の階に比べて多少低い室温となっており、3Fについてはアレルギー調査結果とも一致する。これは、1F室温の測定点が、会議室を含めており、非使用時にはファンコイルユニットが停止する他、出入口からの外気侵入により室温が低下したものの考えられる。3Fでは、空調停止後の室温低下が小さいことが特徴となっている。またBIFは夏暖かく、冬暖かいという室内環境になり、土の熱容量の他に冬季の土中蓄熱によるパネルヒーティングの効果が現れており推定された。

3.2. 室内湿度
室内湿度の分布も1年目、2年目の変化はなく、年間
を通して40～65%以内に収っている割合は全体の91%に達する。冷房時の湿度は、55～65%に維持されており、暖房時は40～45%に維持されていた。測定結果より年間の室内温度は良好に保たれていることが確認された。

3.3 室内CO₂およびCO₂濃度
木建築での外気導入量は環境光度中のCO₂濃度によって制御されている。CO₂濃度測定結果を図-3に示す。竣工当初は、CO₂濃度を1,000 ppmに制御していたが、在席者数の少ない1Fでは750～850 ppm、在席者の多い2Fでは1,000 ppmの基準値を超えることもあっただけで、昭和57年10月に設定CO₂濃度を600～700 ppmに変更した。その結果1年目に比べて2年目のCO₂濃度は低くなり、年間を通じて基準値1,000 ppmを超えたものは全室で4～5%に過ぎない。これに対応したCO₂濃度測定点における時刻数であり、全体では基準値を常に下回っていた。これの結果、CO₂濃度は600～700 ppmに設定するのが妥当であると考えられた。なお、CO₂濃度は年間を通じてビル管理法基準値（10 ppm）を大幅に下回っている。

3.4 粉塵濃度
粉塵濃度測定結果を図-4に示す。木建築は室内負荷に応じて吹出風量を調節するVAV（可変風量方式）システムを採用しているが、粉塵濃度については竣工時の測定値を基準値を上回っていたため、VAV風量の最小を0～40%にし、CO₂の制御変更と同時期に給気量の増大を計り対処した。対策前後の粉塵濃度の変数分布を図-5に示す。この結果、粉塵濃度の基準値の0.15 mg/m²を超過する割合が、1年目で比べて2年目は非常によく少なくになっていることがわかる。これの結果、粉塵濃度もいずも測定点における時刻数で、変更後の各階の日平均値はいずれも基準値を下回っており、十分良好な室内環境であると言える。

4. 照明

図-6 1F、2F、3Fの照度
4.1. 室内照度

本建物では、照明用エネルギーを低減させるために、タスク・アシエント照明白式を採用している。竣工後2年目を経過すると上記の方針を中心に検討されるため、照度計を用いて机上部の明るさを測定した。測定位置は、通常書類作業状態で機のほぼ中央である。結果を図-8に示す。2 F, 3 Fでは、各机上部の照度にかかわらずバラツキが見られるが、室の中央と窓側方に位置した机上部照度の差異は見られなかった。全体では、57年から59年かけて照度が低下した割合は、2 Fと3 Fを合わせて60％、逆に上昇した割合が40％という値になっている。照度が低下した場所において再度調査したところ、ライトを下向きあるいはやや上向きに置いていたケースが多く、書類が積み上げられてその影響になっている例もある。在席者に質問したところ、ライトのまぶしさを気にして下向きにしたとのことであったが、暗さがはまったと感じないという回答が得られ、タスクライトの使い方に個人差がある。

以上の調査結果から、59年に測定した照度の低下はむしろタスクライトの位置が変化したためであると考えられる。タスクライトは個人の好みを大きく現わすことであるが、以前数値を検討し、モニターに使用されなかったが、よいシェードが良いのか明確な結論を得るに至らなかった。タスクライトは今後、我国に広く普及する可能性がありため、照度、形状、機能性について更に研究していく予定である。

4.2. アンケート結果

昭和59年度に実施した照明に関するアンケート調査結果を表-2に示す。

(1) タスク・アシエント照明

机上部の明るさについては、65％人が明るい～普通という回答であり、暗いという回答は24％程度であった。機上部の明るさのまわりについては、気になるという回答が50％に達している。これらは4.1の項で述べたようにタスクライトの位置の変化により様々な結果になったものと推測される。タスクライトのまぶしさや、フリッカーについては、約40％～50%の回答者が感じあるあるいは気になる

| 室名 | 壁面 | 窓面 | 照明設置位置 | 照明方式 | 照明効率 | 照明電力 | 照明使用時間 | 照明担当者 | 照明管理 | 照明費用
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1</td>
<td>1F</td>
<td>2F</td>
<td>タスク/アシエント</td>
<td>15.0W/m²</td>
<td>17</td>
<td>8,700kWh/7日</td>
<td>7,458</td>
<td>58.4</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
<tr>
<td>1F</td>
<td>2F</td>
<td>タスク/アシエント</td>
<td>15.0W/m²</td>
<td>17</td>
<td>8,700kWh/7日</td>
<td>7,458</td>
<td>58.4</td>
<td>58.4～59.3</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>1F</td>
<td>2F</td>
<td>タスク/アシエント</td>
<td>15.0W/m²</td>
<td>17</td>
<td>8,700kWh/7日</td>
<td>7,458</td>
<td>58.4</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
<tr>
<td>2F</td>
<td>1F</td>
<td>2F</td>
<td>タスク/アシエント</td>
<td>15.0W/m²</td>
<td>17</td>
<td>8,700kWh/7日</td>
<td>7,458</td>
<td>58.4</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
</tbody>
</table>

表-3 年間照明消耗電力の比較

<table>
<thead>
<tr>
<th>階</th>
<th>室名</th>
<th>照明設定時間 (h/年)</th>
<th>照明電力 (kWh/年)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1</td>
<td>1F</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
<tr>
<td>1F</td>
<td>2F</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
<tr>
<td>2F</td>
<td>1F</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
<tr>
<td>2F</td>
<td>1F</td>
<td>58.4～59.3</td>
<td>222</td>
</tr>
</tbody>
</table>

表-2 アンケート結果
とされている。フリッカーは現状ではある程度止むを得ないものであるが、これを改善する研究も進められているようである。机上の明るさと周囲の明るさの差も、気になるとする回答が50％に達している。2 F, 3 F では机上の周囲が高さ1.4 m のパティションで囲まれており、視野が限定されるために、周囲との明るさの差を感じるためであろう。（2） インターバル消灯

インターバル消灯については、不快であるか不快であるとする回答が50％近くとなっているが、現在消し忘れ防止としての効果があるため継続している。（3） 昼光利用

窓が十分に設置されていて、1年目の測定結果に比べると気になるという回答が10%多くなっている。トイレの明るさについても、暗いという回答が多くなっているが、特に問題は生じていない。（4） タブレットスイッチの採用

多くの施設者がおり、ほとんど問題のない方法であると言える。

以上の理由に関するアンケート調査結果では1年目に比べて特に変化した項目はなく、技研本部に対する一応の定まった評価をすることができる。

4.3 照明用消費電力量

技研室に関してはスクリーン・アインピーダンスを採用している。この方式により、照明設備電力量を2/3に減らすことができ、年間の照明用消費エネルギー量は天井照明方式の45％程度で済む。図一7, 8 に技研本部と他、一般施設を含めた照明用消費エネルギー量の比較を示す。

(2) 昼光利用

本建物におけるトイレや階段室、屋間に消灯できる
どのように採光窓を設け、事務所や研究室についても自然採光で十分な明るさが確保されている時は、自動的に消灯されるシステムを採用している。年間の省電力量の比較を表1に示す。昼光利用システムによって省エネルギー電力量は 577～680 KWh/年である。

5. おわりに

竣工後1年目および2年目における室内環境の実測と在席者のアンケート調査を行なったものであり、結論を要約すると、

(1) 室内温湿度については暖房時が19～23℃40％、冷房時は23～25℃60％程度に維持されている。

CO₂、CO、粉塵など各濃度も基準値を下回り、良好な室内環境と言える。

(2) アンケート調査によると測定結果を裏付ける結論が得られ、在席者意識はよく室内環境の評価を反映している。

(3) 照明に関するアンケート調査結果では、技研本部の照明に関しては良好な状態に保たれているという結果が得られた。

(4) 本建物ではタスクライティング他、昼光利用、自動消灯など各種の省エネルギー手法を採用し、また地域における優れたパティションを使用した外、タブレット利用などを取り入れている。これらの事項に関してはアンケート調査を行なった結果、いずれも好評であった。

参考文献

1) 酒井、他: 省エネルギー化を計った設備システムに関する研究(その2～8, その9), 空調調和・衛生工学会学術講演会講演論文集,(昭和58.10), pp. 497～520, (昭和59.10), pp. 265～268