不規則荷重条件下における液状化特性について（その 2）
——実地震波載荷時の間隙水圧蓄積量の定量化の試み——

木村 薫 平間 邦興
松本 伸

Study on Characteristics of Liquefaction under Random Loading (Part 2)
——A Test for Quantifying Cumulative Pore Water Pressure under Real Earthquake Loading——

Kaoru Kimura Kunioiki Hirama
Shin Matsumoto

Abstract

Under repetitions of stresses applied by earthquakes, waves, etc., pore water pressures rise in saturated sandy ground, and in extreme cases, liquefaction results. In the past, most judgments made were simply either “liquefaction” or “non-liquefaction”, but lately it has become necessary to analyze the process of liquefaction, that is to say, the behavior of pore water pressure, so that many methods of judgment have been proposed.

In the previous report, the authors showed a cumulative damage technique that was comparatively easy to carry out and was practical, but there were some problems in application above pore water pressure ratio of 70 percent so that these problems were examined. Testing was done using not only one artificial seismic wave but also five real ones. As a result, it was found that improvements were obtained to nearly 100 percent in pore water pressure ratio. This paper describes the results of these tests and applicability of the cumulative damage concept.

概 要

地震あるいは波浪などの繰返し応力によって、飽和した砂地盤には過剰間隙水圧が蓄積し、極端な場合には液状化に至る。以前までは、ある箇所地点での“液状化する”“しない”というような判定が多くなされていったが、近頃では液状化に至る過程、言い換えれば、間隙水圧の挙動までを解析することが必要とされ、さまざまな判定手法が提案されている。

このようなことから、前報①においては比較的容易に解析でき実用的な累積損傷度を用いた手法を示してきたが、間隙水圧比が約70％以上で適用性にやや問題があった。そこで、この問題点について検討を加え、人工地震波のみならず5種類の実地地震波を載荷した結果、どの場合も間隙水圧比100％近くまで比較的良好一致することがわかった。本報告は、これらの実験結果および累積損傷度の適用性について考察するものである。

1. まえがき

地震あるいは波浪などの繰返し応力によって飽和砂地盤に発生する間隙水圧を定量的に表現する方法として、非常に簡易なものから動的有効応力解析②,③による詳細なものまで多様な提案されている。

そこで、前報では、実用的な面で非常に使いやすく、また、間隙水圧の蓄積過程も定量的にできる累積損傷度について示してきた。ところが、本手法を適用した結果、間隙水圧比と累積損傷度の対応は、約70％までは良いがそれ以上で、試料に変化が現れ始め、応力の伝達性が極端に悪くなったのが原因で、もむずしくなる結果となった。また、この実験に用いた不規則荷重が、地盤を想定して求めた人工地震波一波のみであることも適用性の面で問題があった。

このようなことから、まず、応力の伝達性を良くする上に不規則波を時間軸に5倍に伸ばし、振動数を低くおさえ荷載している。また、不規則荷重の種類として
は、前報に示す人工地震波以外に九州地震、十勝沖地震あるいは宮城県沖地震などで記録された計6種類の地震波を用いている。本報告は、これらの地震波を強度重として発生した場合の実験結果を示すとともに累積損傷度の適用性について検討するものである。

なお、累積損傷度についての詳細な説明は、前報を参照されたい。

2. 実験方法

実験には、本圧サーボ型の振動三軸試験機を用いており、荷重計は、正確に応力を測定するために三軸セル内に設置している。試料は、前報に示すものと同様、均質係数Uₚ=2.36、比重Gₙ=2.73の砂である。

供試体は空中落下試験にて作製し、拘束圧γ′=1kg/cm²等で圧密した後、B値が0.95以上になるのを待って非排水で乾燥状態実験を行った。B値を上げるために、圧密前に供試体の空気を封入ガスに置換してから排水させる方法を用いている。また、供試体の相対密度はおおむね60%に統一している。

実験に用いた不規則荷重は、前報で示した人工地震波に加えて、表1に示す比較的総最大加速度の大きさの4種類の実地震波の計6種類の地震波である。実験には、これらの波を時間軸に5倍に伸ばし、最大値を何何倍かに変えて入力している。

そこで、動荷重である地震波を時間軸に伸ばした理由は、まえがきでも述べたが彼氏様がこれまでの結果は、今後も試料にかかる応力の再現性を良くするためである。ただし、このように動荷重の振動数を低下させることによる液状化の強度特性への影響について、ほとんど無視しうる程度であるという吉見ら①あるいは鶴岡ら②の報告がある。

3. 累積損傷度と応力振幅の定義

累積損傷度の定義などは前報で示しているので、ここでは簡単に触れる程度にする。

<table>
<thead>
<tr>
<th>NO.</th>
<th>地震波名</th>
<th>地名</th>
<th>方向</th>
<th>総大加速度 (ms⁻²)</th>
<th>最大加速度 (gs⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>宮古 - S</td>
<td>宮城県沖地震</td>
<td>L-G</td>
<td>167</td>
<td>222</td>
</tr>
<tr>
<td>2</td>
<td>青森橋</td>
<td>L-G</td>
<td>83</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>新潟</td>
<td>N-S</td>
<td>54</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>京都</td>
<td>N-S</td>
<td>103</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>佐賀</td>
<td>N-S</td>
<td>180</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>宮崎</td>
<td>宮崎地震</td>
<td>-</td>
<td>20-60*</td>
<td>90*</td>
</tr>
</tbody>
</table>

表1 地震波の概要

帯度 ILGT で、B値は、図1-1に示すように液状化強度曲線（応力比=1と仮定した図）を用いて、不規則荷重に対する累積損傷度Dは、次式によって求められる。ただし、図1-1は、液状化過程における間隙水圧の上昇過程が直線的でないことを考慮して、累積損傷度の上昇高にあわせて3区間に分割し、それぞれの区間に重みをつけて修正した後の曲線群である。

\[
D = \frac{1}{N_{HF}} \sum_{i=1}^{n} \frac{1}{N_{HF}}
\]

0.25 ≤ 累積損傷度 D ≤ 0.70

| D = 0.25 + \frac{1}{N_{HF}} | \sum_{i=1}^{n} \frac{1}{N_{HF}} |
| 0.70 ≤ 累積損傷度 D |

ここで、N_{HF} は、図2-1に模式的に示すが、直線の順序とした液状化強度曲線で応力比 R_{f} に対応するそれぞれの破壊応力曲線である。したがって、図2-1の曲線群を用いて正弦波荷重に対する累積損傷度を求めるとき、図2-1のような現象になり、一般的な液状化実験の間隙水圧の崩壊過程が比較的類似している。次に、累積損傷度を求める場合、不規則荷重の振幅を決定する必要がある。前報では、図2-1に示すように不規則荷重のゼロクロスイング点と次のゼロクロスイング点までの最大値を振幅として解析している。しかし、この定義によれば、例えば、片側にのみ大きな荷重が起

図1-1 修正後の液状化強度

図2-1 強度曲線と累積損傷度の模式図

100
不規則荷重条件下における波状化特性（その2）・木村・平間・徳木

図-3 不規則荷重の振幅の定義

4. 実験結果および考察

不規則荷重を用いて波状化実験した場合に、供試体に作用する応力比（σ0/2σ），発生する間隙水圧比（u/σ0）および軸圧の経時変化の一例を示したのが図-4である。同図には、損傷累積度も間隙水圧と比較して小さなように併記している。ただし、応力の振幅の定義の違いによっては本の累積損傷度曲線が存在する。

これらすべての実験の概要について示したのが表-2

表-2 波状化実験結果の概要

![データ表](image-url)
いとも言えない。

間隙水圧変化を載荷したときの結果を示したのが図—6である。定義(A)による応力解析を用いて解析すると、印以外は液状化点で非常に良く合っている。ただし、液状化に至るまでの過程については、間隙水圧に比べて累積損傷度の方が大きくなっている。これは、時間的に累積損傷度の方が間隙水圧に比べて早く上昇することを示す。

新潟地震波を載荷したときの結果を示したのが図—7である。定義(A)の振幅を用いて解析すると液状化点および液状化に至る過程のどちらについても累積損傷度の方が大きくなる傾向がある。特に、液状化点(ω/ωυ=1.0)での累積損傷度 D=1.2～1.3と大きな値が得られた。

ところが、定義(B)の振幅を用いて解析すると、図からも明らかのように液状化点および液状化に至る過程のどちらについても両者は非常に良く一致している。これは、図—4に示す荷重の波形をみてわかるように約50秒前に非常に大きな波があり、その後は比較的小さい波となっている。つまり、定義(A)を用いることによって、この大きな波が損傷度に大きく影響しているものと考えられる。

板島地震波を載荷したときの結果を示したのが図—8である。この場合も定義(A)を用いた解析において、多少、液状化に至る過程で、間隙水圧と累積損傷度は上昇するものの両者は比例的良好一致がある。

八戸地震波を載荷したときの結果を示したのが図—9である。この場合も、定義(A)によって解析すると、印以外の結果を除いては、液状化点および液状化過程とともに両者の対応が良い。

最後に、前報でも用いた人工地震波を載荷したときの結果を示したのが図—10である。ただし、荷重を時間軸に伸ばしてあるため、応力の再現性あるいは、間隙水圧の上昇を伴ったときの追従性は非常に良くなっている。その結果、前報では間隙水圧比が70%を超える頃から、応力の追従性が原因で、累積損傷度はほとんど上昇しない傾向があったが、図からも明らかのように今回の実験では、間隙水圧が70%を越えても累積損傷度は上昇し続けている。なお、液状化点での累積損傷度は、D=0.86～1.0と非常に合っており、かつ、液状化過程において、他の不規則波載荷の場合以上に良好な結果が得られている。

以上、6種類の地震波を用いた実験から、液状化過程における間隙水圧の推定に累積損傷度が適用できると言えようである。なお、新潟地震波のような片側に大

図—5 間隙水圧比と累積損傷度の関係（宮古—S）

図—6 間隙水圧比と累積損傷度の関係（関北橋）

図—7 間隙水圧比と累積損傷度の関係（新潟）

きな波が存在する場合には、定義(B)を用いて解析する方が良く、それ以外の比較的規則に近い波形の場合には、定義(A)の振幅を用いて解析する方がよく合う。もし、実際の地盤において液状化を検討する
5. あとがき

昭和58年度より実施してきた不規則荷重を用いた液状化実験から、間隙水圧の蓄積過程を累積損傷度（材料の疲労の程度を表すもの）によって推定できることが明らかとなった。また、不規則荷重の波形によっては応力振幅の定義をかえて解析することによって両者の対応がより良くなることもある。ただし、液状化に至る過程で両者の累積過程にかなりのバラツキのあること、あるいは、実験に用いた供試体の相対密度が60％のみであり、他の密度、例えば、非常に緩い場合とか非常に密な場合についても、この累積損傷度が適用できるかどうかなどは、今後の課題となるだろう。

なお、実験あるいはデータ整理にあたっては、川崎卓志（株）星野、安部松昭吉両氏の尽力に依るところが多い。末筆ながら深謝なる謝意を表します。

参考文献
1) 田村、松本：不規則荷重下における液状化特性について、大林組技術研究所報、No. 29，（1984），pp. 124～128
2) 田村、鳥井真，松本：間隙水圧の蓄積・消散を考慮した液状化解析について、大林組技術研究所報、No. 31，（1985），pp. 69～103
4) 吉見、桑原、橋場：液状化した砂地盤における構造物の挙動と被災防止対策，土と基礎，Vol. 23, No. 6，（1975），pp. 17～22
5) 龍岡，他：正弦波荷重と不規則荷重に対する砂の非排水破壊強度の関係，地盤と基礎の地震災害に関するシンポジウム，（1983），pp. 37～44

図-8 間隙水圧比と累積損傷度の関係（板橋橋）

図-9 間隙水圧比と累積損傷度の関係（八戸）

図-10 間隙水圧比と累積損傷度の関係（人工地震波）