Development of Hi–Lap Splice Method (Part 1)
—Structural Experiments on Lap Splice Confined by Steel Plates—

Tatsuo Nakayama Tatsuya Wakisaka
Kenzoh Yoshioka Yasuhiro Masuda

Abstract

In principle, lap splices of large-diameter deformed bars thicker than 20 mm are not acceptable in reinforced concrete under the Standard for Structural Calculation of Reinforced Concrete Structures of the Architectural Institute of Japan. Accordingly, such bars are joined mainly by welding or by using mechanical connections of which there are several kinds. However, these methods are accompanied by problems about cost, influence of weather, need for special skills, etc.

To solve these problems, a lap splice confined by steel plates (Hi–Lap Method) was developed by the authors' company. This method is for confining reinforcement and concrete of the lap splice regions in the ends of members by steel plates, and also for resisting shear forces. The results of tests on reinforced concrete members constructed by the Hi–Lap Method showed that structural integrity is good and useful data for designing were obtained.

概要

現行の日本建築学会「鉄筋コンクリート構造計算規準・同解釈」（以下、RC規準）によると、D29以上の異形鉄筋は、通常の場合は重ね縦綴を用いないものとされている。そのため、太径異形鉄筋の縦綴は圧接・溶接あるいは機械綴綫によっている。これらの綴綫方法は、熟練を要すること、火器を使用するものは雨天時に施工できないことなどのため、建築生産の効率化・省力化を図った工法には、コスト、施工、品質管理面で適用し難い。当社では、上記問題点の解決のため、圧接などと同等以上の構造性能を有する太径異形鉄筋の縦綴工法（ハイラップ工法）を開発した。ハイラップ工法は、応力の大きい材端（柱下あるいは柱頭）に設けた重ね綴綫部の主筋とコンクリートを鉄板で拘束するもので、この拘束鉄板は耐断強度を兼ねるものである。ハイラップ工法による鉄筋コンクリート構造の破壊実験の結果、構造性能の良いことが確認され、設計に役立つ有効な資料を得た。

1. はじめに

現行の日本建築学会「鉄筋コンクリート構造計算規準・同解釈」（以下、RC規準）によると、D29以上の異形鉄筋は、通常の場合は重ね綴綫を用いないものとされている。そのため、超高層・中高層の鉄筋コンクリート構造物や大型構造物では、一般的に、太径異形鉄筋の縦綴は圧接・溶接あるいは機械綴綫によっている。これらの綴綫方法は熟練を要すること、火器を使用するものは雨天時に施工できないことなどのため、建築生産の効率化・省力化を図った工法には、コスト、施工、品質管理面で適用し難い。当社では、上記問題点の解決のため、圧接などと同等以上の構造性能を有する太径異形鉄筋の縦綴工法（ハイラップ工法）を開発した。

この報告は、ハイラップ工法で造られた鉄筋コンクリート構造の構造性能に及ぼす各種因子の影響を基礎的に調べ、設計に役立つ有効な資料を示すものである。

2. ハイラップ工法の概要

ハイラップ工法（High Quality Lap Splice Method）は、施工の信頼性の優れている重ね綴工法を太径異形鉄筋に適用したものである。特徴は、施工の合理化を考え、太径異形鉄筋の重ね綴を柱頭あるいは柱脚（応力の大きい材端）に設けること、割裂破壊防止のため重ね綴部の主筋とコンクリートを鉄板で拘束すること、この拘束鉄板にせん断補強効果を兼ねさせることにある。

本工法の施工工順例を図1に示す。まず、所定の位置に拘束鉄板を装付する。これは型枠兼用にもなり得る。つぎに、組立精度の向上をするため、地組された柱の組立鉄筋を構築する。この場合、上部材枠工事、コンクリート打設工事と続く。工法は、現場作業を簡略化することによって、施工の効率化、省力化を計ることである。
3. 試験体

3.1 試験体の形状・配筋および拘束鉄筋

試験体は、鉄筋の引張応力伝達の最も厳しい条件としての純曲げ加力試験体と実соедин近い応力条件の曲げせん断加力試験体からなる。曲げせん断加力試験体は、高層建物の中間階ほほ相当断面640×640、主筋筋12-D35（fy = 2.80％）とした。純曲げ加力試験体は、その半割り断面をモデル化し、断面350×640、主筋筋8-D35（fy = 4.42％）とした。いずれも曲げ降伏形である。拘束鉄筋の断面形は、前者が円形、後者は円形である。拘束鉄筋の長さは重ね績手長さ全長を標準とした。ただし、曲げせん断加力試験体では部材断面の全長とした。実験に取り上げた影響因子は、重ね績手長さ nd（3種）、コンクリート強度 fcm（2種）、拘束鉄筋の厚さ t（4種）の3項目とした。試験体の形状・配筋等を図2に、影響因子の配列を表2に示す。

3.2 試験体の製作および材料の性質

コンクリートは、実験の条件を想定し、巻打ちとした。鉄筋および鉄筋の材料試験結果を表1に、コンクリートの材料試験結果を表2に、それぞれ示す。

4. 実験方法

4.1 加力方法

2点荷重による純曲げ加力では、左右の危険断面位置のモーメント比を常に1：1に荷重した。曲げせん断加力では、図3に示す方法で荷重し、その比を1：2（2α, 以下

<table>
<thead>
<tr>
<th>表1 鉄筋および鉄筋の材料試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄筋名</td>
</tr>
<tr>
<td>D19</td>
</tr>
<tr>
<td>D35</td>
</tr>
<tr>
<td>t1.6</td>
</tr>
<tr>
<td>t3.2</td>
</tr>
<tr>
<td>t4.5</td>
</tr>
<tr>
<td>t6.0</td>
</tr>
</tbody>
</table>

図3 加力方法
前), 2:3 (3d₃ 時), 1:1 (4d₄ 以後) に変化させた。載荷プログラムは d₃ (最終面積変形降伏時圧のため) を基準に整数倍の変位で各 2 回の正負繰返しである。

4.2 測定方法

純曲げ試験体では支点に対するスパン中央の相対たわみを、曲げせん断試験体では試験間の相対たわみを電気式変位計で求めた。荷重はロードセルで、鉄筋と鉄板のひずみはワイヤーストレインゲージで、それぞれ求めた。

5. 実験結果および考察

5.1 実験結果

表-2 に実験結果の一覧を示す。最外締固鉄板降伏荷重、最大荷重および変形能の判定結果 (4d₄) の変形能に最大荷重の 80%以上の耐力を維持したもの（印、それ以外のものを入印）を示した。表高 RC の設計では柱の設計クリティカリーは、通常、塑性率 2 としている。ここでは安全率を考え、塑性率 4 以上の極値をもたせることとした。図-4 に、荷重-変形関係および最終破壊状況を示す。

5.2 変形能に及ぼす各種因子の影響

重ね継手部材の変形能に与える各種因子の影響は以下のようにまとめられる。

5.2.1 純曲げ加力実験

[コンクリート強度の影響]

コンクリート強度の相違 (300 kgf/cm², 400 kgf/cm²) による荷重-変形関係の変化は試験体①と⑥で比較できる。各種影響因子のうち、重ね継手長さを 30 d₃ に、拘束鉄板厚さを 4.5 mm に、拘束鉄板長さを重ね継手全長（したがって、この場合 30 d₃）固定している。拘束鉄板外のコンクリート表面の観察結果では、(7) (298 kgf/cm²) は 2d₃ の変形のとき主筋に沿った付着び割れが観察され、3d₃ の変形のときコンクリート上端が圧壊し始めた。3d₃ の変形までは安定した荷重-変形関係を示し、4d₃ の変形のとき至り、耐力が急激に低下した。一方、(5) (402 kgf/cm²) は 4d₃ の変形のとき主筋に沿った付着び割れが発生したが、荷重-変形関係は 4d₃ の変形まで安定していた。以上の値から、重ね継手長さ 30 d₃、拘束鉄板厚さ 4.5 mm、重ね継手全長に拘束鉄板を設けた場合で 4d₃ の変形能を確保するためには、コンクリート強度 400 kgf/cm² でよい。

[重ね継手長さの影響]

重ね継手長さの相違 (30 d₃、35 d₃、40 d₃) したがって重ね継手長さの変形に伴って拘束鉄板長さを変える) による荷重-変形関係の変化を試験体③、⑦、⑧で比較できる。各種影響因子のうち、コンクリート強度を 300 kgf/cm² に、拘束鉄板厚さを 4.5 mm に、拘束鉄板長さを重ね継手全長に固定している。③ (35 d₃)、⑦ (40 d₃) は 4d₃ の変形まで安定した荷重-変形関係を示した。

以上のことから、コンクリート強度 300 kgf/cm²、拘束鉄板厚さ 4.5 mm、重ね継手全長に拘束鉄板を設けた場合で 4d₃ の変形能を確保するためには、重ね継手長さ 35 d₃ でよい。

[拘束鉄板厚さの影響]

拘束鉄板厚さの相違 (1.6 mm, 3.2 mm, 4.5 mm, 6.0 mm) による荷重-変形関係の変化を試験体④、⑤、⑥で比較できる。コンクリート強度を 300 kgf/cm² に拘束鉄板長さを 35 d₃ に、拘束鉄板長さを重ね継手全長（したがって、この場合 35 d₃）固定している。④ (1.6 mm) は 4d₃ の変形に至る前に急激に耐力が低下した。しかし、⑥ (3.2 mm)、② (4.5 mm)、① (6.0 mm) は 4d₃ の変形まで安定した荷重-変形関係を示した。

以上のことから、コンクリート強度 300 kgf/cm²、重ね継手長さ 35 d₃、重ね継手全長に拘束鉄板長さを設けた場合で 4d₃ の変形能を確保するためには、拘束鉄板厚さ 3.2 mm でよい。

表-2 実験結果
図-4 荷重～変形関係および最終破壊状況
【拘束鉄筋板長さの影響】
拘束鉄筋板長さの選定（35 d_b, D）による荷重〜変形関係の変化を試験体①, ②で比較できる。今回の試験の結果、拘束鉄筋板長さは断面全体である（D）で十分である。

【特殊補強の影響】
コンクリート強度を300 kgf/cm²級に、重ね繰手長さを30 d_bに、拘束鉄筋板厚さを4.5 mmに、拘束鉄筋板長さを重ね繰手全域にした（ただし、この場合30 d_b）に固定し、重ね繰手部の特殊補強の有無による荷重〜変形関係の変化を試験体①, ②, ③, ④で比較できる。

(2) 主筋先端L形フック付き
(3) リブ付き拘束鉄筋は4δ_bの变形まで安定した重ね〜変形関係を示した。
(4) (スキャットボルト付き拘束鉄筋)は4δ_bの負の第2サイクル時に耐力が急激に低下した。

以上のことから、例えば、主筋先端L形フック付きの、リブ付き拘束鉄筋を用いる場合、コンクリート強度300 kgf/cm²級に、重ね繰手長さ30 d_b、拘束鉄筋板厚さ4.5 mm、拘束鉄筋板長さを重ね繰手全域にした（ただし、この場合30 d_b）で4δ_bの变形能力を確保できる。

5.2.2 曲げ曲げ断力実験
3体の試験体とも、村田部材1/5まで安定し荷重〜変形関係を示した。純曲げ断力時に比べ、曲げ曲げ断力の場合、4δ_bの変形能を確保するための条件は緩和された。試験体1に見られるように、重ね繰手長さ30 d_b、拘束鉄筋板長さを断面全体の3/5の場合で、コンクリート強度240 kgf/cm²で十分であった。

以上、4δ_bの変形能を確保するための各種影響因子の範囲を表-3に示す。

5.3 荷重〜ひずみ関係
5.3.1 付着応力分布
図-5に、主筋のひずみ分布の一例を示す。下式より、最外端引張鉄筋降伏時のひずみ分布の勾配から各図区の主筋の付着応力σ_nを求め、それから得られた重ね繰手部の平均付着応力と重ね繰手長さの関係を図-6に示す。

σ_n = σ_w / σ / δ

σ_n : 主筋1本の公称断面積（9.57 cm²）
σ_w : 区間1円周での主筋の存在応力の差
σ : 主筋1本の公称断長（11.0 cm）
δ : 区間1の長さ

繰手長さが大きいほど平均付着応力は小さくなり、この傾向は既往の研究結果と一致する。試験体①, ④を除き、実験値は「RC規準」における短期許容付着応力（その他の場の値）より小さいことが分かれる。

5.3.2 拘束鉄筋
図-7に、純曲げ試験体の荷重〜拘束鉄筋のひずみ関係を示す。これらの測定位置は重ね繰手鉄筋の先端に配置した閉鎖型フープの側辺（長辺）および底辺（短辺）それぞれの中央である。純曲げ試験体①, ③, ④, ⑦, ⑨, ⑩で見られたように、載荷方向に対して引張鉄筋側の拘束鉄筋の短辺が降伏し、ひずみが十分流れた。このことからも、村田部材の変形に伴う重ね繰手鉄筋先端部の変形が大きいか、そのフープが拘束されていることを示すものである。

重ね繰手長さの相違（30 d_b, 35 d_b, 40 d_b）による拘束鉄筋の降伏時の平均付着応力が大きく、この差が拘束鉄筋の降伏時ひずみに影響を与えると考えられる。

図-8は、主筋のひずみ分布を示す。図-9は、重ね繰手長さと変形能との関係を示す。重ね繰手長さが30 d_bの場合は、変形能が最も大きく、変形能が30 d_bの場合は、変形能が最も小さい。重ね繰手長さが40 d_bの場合は、変形能が最も大きい。

図-10は、降伏時の平均付着応力と変形能との関係を示す。重ね繰手長さが30 d_bの場合は、変形能が最も大きく、変形能が30 d_bの場合は、変形能が最も小さい。重ね繰手長さが40 d_bの場合は、変形能が最も大きい。
図-8 荷重-拘束鉄板のひずみ関係 (⑥ BM-35S-16)

6. むすび

今回、高層建物の中間階にほぼ相当する断面（640×640、主筋12-35S、P₀=2.80%）を対象に、ハイラップ工法で造られた鉄筋コンクリート枠の破壊実験を行なった。その結果、D35の場合でも、維手部を適切に拘束すれば優れた変形能をもたら得ることが分かった。

純曲げ試験の結果、変形能4σ₀を確保するためには、以下に示す条件で十分であった。

(1) 重ね維手長さ30dₕの場合で、コンクリート強度：400kgf/cm²。
(2) 重ね維手長さ35dₕの場合で、コンクリート強度：300kgf/cm²、拘束鉄板比：1.70%。
(3) 曲げせん断試験の結果、材質φ1/5まで安定した荷重-変形関係を確認した。前述の条件は適用されて

(4) 重ね維手長さ30dₕの場合で、コンクリート強度：240kgf/cm²、拘束鉄板長さ：断面の全長位
拘束鉄板比の定量化は、更に検討を要する。今後、軸力のある場合の構造性能等を確認し、実用化に供したい。

参考文献
1) 土堅、白川：太径異形鉄筋の重ね維手に関する実験的研究、土木学会、コンクリート・ライブラリー、No. 43、(1977)
3) 進井、森田：異形鉄筋の付着側面強度に関する研究、日本建築学会論文報告集、No. 319，p. 47～55、(1982. 9)
4) 南田、勝板、吉岡、中山：太径異形鉄筋の重ね維手工法の開発----高さ補強維手の構造性能実験——、大林組技術研究所報、No. 39、p. 97～102、(1989. 8)