Flood Simulation by Euler-Lagrangian Method
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Abstract

A two-dimensional combined Fuler—-Lagrangian (EL) method based on simplified depth-averaged
Navier-Stokes equations was adopted for a flood simulation study. The lack of iterative procedures and
convergence-related problems were among the reasons for adopting this method. Calculations weve carvied
out on an artificial rectangular veservoiv. The resulls illustvale the rvates of variation of water elevation
and flow velocity inside the reservoir, and these weve compared with Stokes’ analytical solution and a one-

Masayasu Ito

dimensional numerical solution.

It is concluded that the results obtained by the EL wmethod are in

conformity with the physics of the simudated phenomena, yielding a lower vate of variation of water

elevation inside the reservoir when compaved with the one-dimensional resulls.

The EL method is reliable

in handling rapidly-varying flows, while further refinement of the method is possible.

1. Introduction

Flood and heavy rainfall are at the origin of serious
accidents in the engineering practice. To prevent
tragic consequences of flood accidents, accident pre-
diction and prevention studies rely mostly on numeri-
cal methods.

The combined Euler-Lagrangian (EL) method was
adopted in the present study to simulate a hypotheti-
cal flood accident. This is an attractive and promis-
ing method that has a good capacity to handle rapidly
varied flow and permits an easy treatment of initial
In addition, the EL method
avoids time-consuming iterative solutions and conver-
The results of the study,

conducted for the case of a rectangular reservoir,

and boundary conditions.

gence related problems.

illustrate the rate of variation of some important
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parameters, such as water elevation and flow velocity,
during the accident. Based on these results, appropri-
ate measures could be conceived in order to secure
against flooding the dikes of the reservoir and the

structures inside it.
2. Numerical Method and Flow Model

The EL method is implemented in two horizontal
dimensions. The fluid is represented as a set of
moving fluid particles of fixed volume. First, at each
time step, Lagrangian positions and velocities for all
moving fluid particles are determined. Then, Euler-
ian depth of flow and velocity field, defined with
respect to a two-dimensional grid overlaying the
computational domain, are evaluated based upon the
It should

be noted that velocity is treated as both, a Lagrangian

distribution of fluid particles in the domain.
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(in respect to moving fluid particles) and Eulerian (in
respect to a fixed grid in the computational domain)
variable, playing the role of interface between Lagran-
gian and Eulerian approaches. For instance, flow
velocity at each grid point is calculated as the average
velocity of all fluid particles present in the rectangular
grid cell having the grid point at its center. Similar-
ly, flow depth is proportional to the number of fluid
particles present in each cell. The average flow
depth over the cell is calculated from the number of
fluid particles within the cell, the volume of each
particle and the size of the cell.

The governing set of equations adopted for the flow
model consists of the depth-integrated Navier-Stokes

equations in the form:

%: —V-(RU) . 1)
O Do wemyupr Y
{%71‘%“ (U-V) Zy+ (U-V) h?’s}
= —gVH + 45U +2 (VU he)
AUV L g 2)
where
U =#i+7vj vertically averaged horizontal
velocity
i, ©=components of the averaged horizontal
velocity
i, j =vectors of unit length along x and y axes
g =acceleration of gravity
H =elevation of free water surface
h  =H—Z=flow depth
t =time
Z  —topographic elevation
u“ =viscosity of fluid
o  —density of fluid

The first equation is the depth-averaged continuity
equation involving the horizontal flow velocity and the
depth of the fluid confined between a rigid boundary
The second
equation represents the depth-integrated forms of the

below and a free-surface flow above.

momentum equations in the x and v directions, com-
Coefficients @ through ¢
in Equation (2) depend on the shape of the velocity
profile.

bined in a single expression.

A comprehensive analysis and a detailed
description of the model used as a prototype for the
present study can be found in?.

Considering a hypothetical accident, a situation
where no experimental results for reference are avail-
able, the numerical results presented in Section 5 were
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devised with economy of computing effort in mind and
emphasis on the concept in solving a specific problem
rather than accuracy of the solution. Accordingly, £
was taken equal to unity and the rest of the
coefficients in Equation (2) were set equal to zero.

Equation (2) thus becomes
oy _Du
WJF (U-v)u= Di
[8]18)
h
As the above simplification would imply that there is

= —gVH +Lvu—1

no horizontal friction within the flow and consequent-
ly the velocity profile is constant with depth, bottom
friction proportional to the square of the depth-aver-
aged flow velocity was reintroduced in the model in
order for the flow to be realistic. A more detailed
comparative study that will gradually include all
In Equation (3), £i=gn?/
h'? is the bottom friction coefficient and #» is Mann-

coefficients is in progress.

ing’s roughness coefficient.

As suggested in?, the water viscosity ¢ in Equation
(2) was replaced by a lateral friction coefficient £, that
represents the effect of shear between portions of fluid
of different horizontal velocities. The calibration of
/2 is discussed in Section 4.

Equation (3) expressed in difference form is used to
update velocities of each fluid particle at each time
increment and the position of each fluid particle is
determined from

X/e+1,t:X1z,z+ (Ulz,t+Uk,t+l)At/2
where

X: =position of fluid particle & at time ¢

Xer1 —position of fluid particle £ at time #+1

Uk,t

U1 =velocity of fluid particle % at time ¢+1

At

=velocity of fluid particle % at time ¢

=computational time step

3. Case Study

Dikes form a rectangular B X LXH =375X975X
(all
dimensions measured from top of dikes) with uniform
bottom slope i=0.01 (Fig. 1 and 2). A bulkhead,
designed to withstand a water head of 6.70 m, is

7.0 m reservoir of trapezoidal cross-section

erected at the right end of the reservoir. The reser-
voir is initially empty. The problem to be solved is
formulated as follows: assume that the reservoir is
flooded and simulate the variation of water elevation
and flow velocity inside the reservoir corresponding to
approximately 1 m increase above the design head of

the bulkhead.
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Fig. 6 U-velocity component variation at monitoring points
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- . . . aged horizontal velocities at different locations in the
4, Verification Tests and Calibration of the & . z v . .
reservoir could be reproduced satisfactorily by the

Model numerical model. Because experimental data was

Two series of verification tests, as prescribed in? not available, velocities necessary for the calibration

were carried out ensure that the 2-D EL flow model of 1>, were calculated using a 1-D numerical solution

accords with energy and momentum conservation based on the full Saint-Venant equations written in

laws. conservation form. The equations were discretized

In addition, the coefficient of lateral friction f£; by means of Mac-Cormack two-step explicit diffe-
needed to be calibrated so that measured depth-aver- rence sheme.
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Fig. 13 Reflection of a stream
from a rigid wall

5. Results

The reservoir is transformed into a 2-D computa-
tional domain using a uniformly spaced (dx=4dy=2.5
m) 40X 16 grid. A unilaterally distorted image of the
grid is shown on Fig. 3. A rapidly varied water
release is modeled using 160 (4 layersx40) sources of
fluid particles concentrated on the left side of the grid.
The intensity with which fluid particles are released at
the sources is expressed as a release period vs. time
relationship (Fig. 4) and the hydrograph on Fig. 5
(thick broken line) respectively. The variation of
horizontal velocity components (#, ») and depth (%) at
9 specific grid points were monitored during simula-
A 5t/1
order polynomial fitting is used to improve the illus-

tion. Fig. 6, 7 and 8 illustrate these variations.
tration of the numerical results shown by a thin
oscillating line. Three consecutive velocity fields are
also shown on a horizontal plan of the reservoir in Fig.
9. Water surface profiles drawn along the longitudi-
nal axis of symmetry of the reservoir and correspond-
ing to these velocity fields are illustrated in Fig. 10.
All experiments were conducted using fluid particles
with a volume of 1.5 m® and time step 4¢=0.05s.
Mac-Cormack numerical solution is illustrated
under the form of (1)-longitudinal water surface pro-
files (along the longitudinal axis of symmetry, perpen-
dicular to the bulkhead) plotted at time intervals of 4
t=5s (Fig. 11) and (2)-total head variation in front of
the bulkhead (Fig. 12).
channel of trapezoidal cross—section with the same
The bottom slope of the

channel is 0.01, the lateral slope of the dikes enclosing

The solution is obtained for a
dimensions as the reservoir.
the channel corresponding to 45°. Manning’s rough-
ness coefficient is #=10.04, the computational time step
and grid interval are respectively 4t=0.5s and dx=

5m, determined by the stability criterion. For
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Fig. 14 Water surface along longitudinal axis
of symmetry by EL method

computational reasons, prior to the flooding, initial
channel flow with a discharge equivalent to €@ =20
m?®/s in the right direction is assumed. The flood
hydrograph at the left boundary of the channel is
modeled according to the solid line shown on Fig. 5.
A thin broken line represents a hydrograph of a
gradually vanishing outflow at the right boundary
respectively.

For reference, a very popular analytical solution
given by Stoker! and known as Reflection of a stream
The solu-
tion is based on the shallow water theory of first order

Jrom a rigid wall is illustrated in Fig. 13.

and is a valuable reference for comparison with
numerical solutions, since there is a lot of physical
For
the purpose of the present study, the analytical solu-

insight to be gained through its consideration.

tion yields a quantitative evaluation of a sudden
increase in water depth in front of the bulkhead for a
mean velocity #, selected among velocities typical for
the flow in the reservoir, calculated using the 2-D
solution.

The analytical solution is obtained along the longi-
It is
assumed that the flow in the reservoir has a mean
velocity ;=120 m/s and depth % =6.70 m. Both
values are necessary in order to solve the shock
equations [1, p. 328]. The value of %, is taken equal
to the value of the design head for the bulkhead-6.70
m. The celerity &, of the reflected stream is obtained

tudinal axis of symmetry of the reservoir.

by solving the first shock equation and taking the
largest of the three roots: & =7.84 m/s. The depth
in contact with the wall (4, =7.72 m) is obtained from
the second shock equation. As observed from Fig. 13,
the maximum depth increase in front of the bulkhead
is equal to the height of the reflected stream-(44=1.02

m).
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6. Discussion

It is well understood that the performance of the 2
-D EL flow model should be evaluated by means of a
comparative study including experimental results or
observations conducted on a real event, so that
simulated and real time histories could be compared.
At this phase of the study, an analytical and one
numerical solution provide a basis for comparison.

All three (analytical, 1- and 2-D) solutions simulate
a head increase in front of the bulkhead. The analyti-
cal solution is restricted by “zero bottom slope” and
“no friction” assumptions and can not simulate the
time frame of the flow in the reservoir. However, it
suggests that the physics of the simulated phenomena
are handled satisfactory by the numerical solutions.
As seen from Fig. 9 and 10, the variations of water
elevation and velocity field in the reservoir testify for
the presence of several propagation waves of a bore
type in the longitudinal direction of the reservoir.
The waves reflect from the bulkhead, superimpose on
the incoming waves and are at the origin of severe
disturbances of the water surface.

The fact that v-velocity components in the reser-
voir are approximately equal to zero draws support in
favor of using a 1-D solution for the purpose of both,
calibration of the coefficient of lateral friction f; and
The 1-D Mac-Cor-
mack solution simulates a water head increase in
front of the bulkhead that is rather significant in
magnitude and sudden in time (= 1.3 m within 5 s, Fig.
12). This result
sionality of the solution.

comparison with 2-D results.

is attributed to the one-dimen-
It appears that one-dimen-
sionality does not allow for partial dissipation of the
initial disturbance through reflected waves in a lateral
direction as it may be observed in the case of the EL
solution (Fig. 14).
tion, the 1-D solution simulates an almost sudden

Similarly to the analytical solu-
increase in head. Is case of the 2-D solution however,
the head increase is less intensive (=1.3 m Within 10's,
Fig. 8, pt. #6).
and downward along the inclined surface of the dikes,
are reflected gradually.

Indeed, fluid particles, moving upward

Moreover, all particles are
interacting with each other, slowing down their course
and consequently reducing the velocity of their impact
on the bulkhead.

Comparison between the 1- and 2-D solutions shows
The 1-D solu-
tion features two jumps in head variation in front of
the bulkhead (Fig. 12). The first jump is at T =25
and the second at T'=75s.

that they have different time frames.

A rather intense increase

113

in head also occurs between the two jumps.

On the contrary, the 2-D solution (Fig. 8, pt. #6)
simulates a delayed (after T =40s) start in head
increase in front of the bulkhead and shows no jumps.
The solution is delayed and extended in time when
compared with 1-D results.

The head variation in front of the bulkhead plays an
important role in its safety analysis. According to
the 1-D solution, the increase of head occurs within
approximately half of the time interval as calculated
by the 2-D solution.
should be recommended for design purposes to deter-

Logically, the 1-D solution

mine the safety margin of the bulkhead. However,
when advancing towards reality by means of the 2-D
solution, the head increase appears less intense, mean-
ing that the safety margin could be reduced, if neces-
sary.

Finally, the 2-D solution, viewed as an approxima-
tion of the real phenomena occurring in the reservoir,
appears very close to reality and inspires confidence.
The EL method provides a very simple and physically
consistent way to specify external and internal bound-
ary conditions by assigning sources of fluid particles
(inflow), or authorizing the particles to exit freely
(outflow) anywhere around or inside the computa-
tional domain. Assigning sources inside the computa-
tional domain being as simple as on the external
boundaries, it follows that the subdivision of the
computational domain into sub-reaches is no longer
required in order to specify internal boundary condi-
tions as is traditional in the case of a pure Eulerian
formulation. In addition, the uniform distribution of
sources over the entire domain accommodates for the
simultaneous treatment of such a “horizontally uni-
form” condition as rainfall, a feature often present
during flood related accidents.

7. Conclusion

A computationally challenging 2-D EL method is
advocated as an engineering tool in accident predic-
tion and prevention studies. The method appears to
have a good capacity to handle rapidly varied flow
phenomena under the initial and boundary conditions
With
a good physics interpretation of the phenomena under

encountered during flood and rainfall analysis.

investigation and still unfulfilled possibilities for
refinement of the solution, the method is viewed as a
reliable tool, especially when a supportive experimen-
Coupling the 2-D EL method
with other 2-D solutions is expected to overcome the

tal study is not feasible.

difficulties arising from the lack of experimental data
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necessary for the calibration of the coefficient of
lateral friction. Using several numerical solutions in
one case study has the advantage of providing a basis
for instructive comparative studies and eliminating
random errors in the solutions. Moreover, it provi-
des the solution variety and quality needed to stre-
ngthen confidence in accident prediction and preven-

tion studies.
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