タイル剥落防止工法の耐震性能(その1)

静的水平力載荷実験による検討

小川晴果 三谷一房 津田和明 甚野 学 川口 徹 江戸宏彰

Seismic Test on Methods of Preventing Tilework Fall-off (Part 1)

Evaluation by Static Horizontal Loading Tests

Haruka Ogawa Hitofusa Mitani Kazuaki Tsuda Manabu Jinno Toru Kawaguchi Hiroaki Eto

Abstract

Ceramic tiling is one of the most durable and commonly used finishing materials on exterior walls of buildings in Japan. However, when fall-off occurs as a result of earthquakes or other causes (e.g. thermal and moisture movements), it poses considerable danger to pedestrians. Recently many new methods have been developed to prevent tilework fall-off. However, standard testing procedures have thus far not tried to determine the seismic resistance capacity of these methods. In this study, seismic tests were conducted using true-to-scale specimens of tile-covered walls in order to accurately determine the seismic resistance capacity of these methods. It has been concluded that, particularly, above a 1st-story deformation angle of 1/250, a cyclic load leads to a loss of bonding strength. The seismic test also revealed differences in the performances of tiling methods, especially above a deformation ratio 1/250. The method utilizing a three-dimensional knitted fabric covers cracks in concrete walls remarkably well and resists cracking and delamination.

概 要

陶磁器質タイル張り仕上げは、耐久性に優れることから、外壁仕上げとして一般的に用いられている。しか し、万が一剥落した場合には、人命に与える危険性が非常に高い。近年、外壁タイルの剥落防止を目的とした多 くの新しい工法が提案されてきているが、これらの新工法の耐震性については、いまだ統一的な評価がなされて いないのが現状である。本報告では、4種類のタイル剥落防止工法を取り上げ、実仕様の小試験体を製作し、地 震時を想定した水平加力実験によってこれらの工法の耐震安全性について検討している。その結果は次の通りで ある。層間変形角の増加に伴いタイルのひび割れ率及び剥離率は共に増加し、層間変形角1/250以降では工法間 の剥離率に明確な差が認められる。又、ひび割れ隠蔽率及びひび割れ・剥離抵抗指数は共にインターネット工法 が最も高い。

1. はじめに

近年,地球環境保護の観点から建物の長寿命化が求めら れ,外装仕上げに対しても耐用年数の長い材料が好まれ る傾向にある。陶磁器質タイル張り仕上げはその典型的 なものであり,鉄筋コンクリート(RC)躯体とほぼ同等 の耐用年数が期待できる。しかし,陶磁器質タイルのほ とんどが,現場でセメントモルタルを用いた手張り工法 で施工されており,万が一,タイルが剥離・剥落した場 合には,人命に与える危険性が高いことが重大な問題と なっている。さらに,先の兵庫県南部地震後,非構造部 材に対する耐震性が厳しく問われており,タイル張り仕 上げの剥離・剥落に対する安全性が再度見直されてい る。このような状況のもと外壁タイルの剥落防止を目的 とした多くの新しい工法が提案されているが¹⁾, これらの新工法の耐震性については, いまだ統一的な評価がな されていないのが現状である。

本報告では、5種類のタイル張り工法(在来工法1種, 剥落防止工法 4種)について実仕様の縮小試験体を製作 し、地震時を想定した静的水平力載荷実験によって、こ れらの工法の耐震安全性を検討している。

2. 実験計画

2.1 試験体の作製

タイル張り仕上げを施工したRC試験体の形状寸法及び 配筋状況をFig.1及びTable 1に示す。RC試験体は側柱を 有するI型耐震壁であり,中層建物の一般的な耐震壁を 対象としている。使用したコンクリート及び鉄筋の材料 試験結果をTable 2及びTable 3に示す。

コンクリート打設後28日間養生した後,RC試験体の壁 部(寸法900×1480mm)の両面に吸水調整材(EVA系ポリマ-ディスパージョン10倍液)を塗布した後,現場調合による下地 モルタル(普通ポルトラント・セント:川砂=1:2.5 by vol.)を 厚さ10mmで塗布した。但し,ループボンド工法では,予 めセパレータ部のPコン(縦横約600®)を除去し,そこに ループボンドを挿入した後,それらのパイル部分に下地 モルタルが十分含浸するように塗布した。インターネッ ト及びベースネット工法では,下地モルタル塗布後7日 間養生した後,既調合のポリマーセメントモルタルで立 体繊維材料の張付けを行い,翌日,ステンレスアンカー ピンを縦横約500®で施工した。下地モルタル塗りから14 日間養生期間を置いた後,現場調合モルタル(普通ポル ランドセント:珪砂5号=1:1by vol.)を用いて45二丁タ イルユニットをマスク張り工法で張付け,翌日目地詰め

Fig.1 RC試験体の形状寸法及び配筋概要 Shapes and Bar Arrangement of RC Skeletons

を行い,更に14日間養生した。なお,タイル張り施工を 行ったコンクリート部分の型枠には,モルタルの接着強 度を低減し浮きを発生しやすくする目的で,樹脂加工合 板を用い表面を平滑な状態とした。タイル張り仕上げ層 の仕様及び試験体への割付をFig.2に示す。

2.2 加力方法

加力装置をFig.3に示す。水平力の載荷は,RC試験体 の基礎を加力フレームの下部にPC鋼棒で固定し,加力梁 端部を油圧ジャッキによって押すことにより片持ち梁型 で行った。最初に所定の軸方向力を与え,これを保持し ながら,水平力を正負交番で載荷した。水平力の載荷 は,Fig.4に示すように,層間変形角(R:水平変位をそ

Table 1 RC試験体の諸元 Characteristics of RC Skeleton

シアフパ	壁板			側柱			
>>>, X/Y	形状	縦筋	横筋	形状	主筋	帯筋	軸心力度
21L N (01 *1	L×t	Pwv	Pwh	Bc×Dc	Pcg	Pcw	
M/QL	(cm)	(%)	(%)	(cm)	(%)	(%)	(N/mm ⁻)
0.65	170 × 7	D10@200	D10@200	22 2 22	12-D13	2-D6@50	2.0.4
0.05	1/0 ~ /	(0.51)	(0.51)	22~22	(3.15)	(0.58)	2.54

注、*1:Lは側柱芯芯間距離 *2:柱1本当たりの軸応力度

Table 2 コンクリートの材料試験結果 Mechanical Properties of Concrete

部位	ヤング係数 Ec (GPa)	圧縮強度 σb (N/mm²)	引張強度
基礎	30.0	30.9	3.01
壁、柱	24.0	25.2	2.50
加力梁	29.0	37.6	3.17

Table 3 鉄筋の材料試験結果 Mechanical Properties of Reinforcement

呼び名	ヤング係数 Es (GPa)	降伏強度 ♂y (N∕mm²)	引張強度 σb (N/mm²)	伸び率 (%)	使用部位
D6	188	340	465	25.0	側柱帯筋
D10	186	355	515	18.7	壁筋
D1 3	193	342	507	20.6	側柱主筋 加力梁助筋 基礎助筋
D25	191	382	574	24.1	加力梁主筋 基礎主筋

Fig.2 タイル張り工法の種類 Types of Tiling Methods

の測定高さで除した値)で1/1000,1/500,1/250で2回ず つ繰返した後,正方向で破壊させた。

2.3 測定項目及び方法

RC試験体については,軸方向力と水平力をロードセル で,各部変位を高感度変位計で,鉄筋のひずみをひずみ ゲージで測定した。又、コンクリートのひび割れ状況を 目視観察し記録した。タイル張り仕上げ層については、 その表面のひずみをひずみゲージで測定した。タイル張 り仕上げ層のひび割れを目視観察により記録するととも に,その浮きについては,熟練タイル工がテストハン マーによる打診でチェックし記録した。また,加力試験 終了(破壊)後,浮きを生じなかったタイルについて, その周辺にコンクリートに達するまで切込みを入れ,建 研式引張試験機を用いて接着強度を求めた。得られた結 果に基づき,タイルのひび割れ率及び剥離率とRC試験体 の層間変形角, RC試験体のひび割れ率及びタイルの接着 強度の関係について検討した。なお,ひび割れ率及び剥 離率は,既往の研究²⁾に準じ壁の表面をメッシュに分割 (タイルの割付を適用)し,以下のように定義した。た だし,タイル目地部のひび割れは考慮しなかった。

ひび割れ率=ひび割れを生じたメッシュの数 / メッシュの総数 = 剥離を生じたメッシュの数 / メッシュの総数 剥離率

3. RC試験体の破壊性状及びタイル仕上げの ひび割れ・剥離性状

3.1 RC試験体の破壊性状

RC試験体の破壊性状は3体とも同じである。No.1試験 体のせん断力と水平変位の関係をFig.5に示す。側柱脚 部の曲げひび割れ(Q 250kN),側板引張下部の曲げせ ん断ひび割れ(Q 250kN),壁板中央のせん断ひび割れ (Q 500kN)を順次生じ,最終的には,側柱を巻込みな がら壁板のコンクリートがせん断破壊(Qmax 900kN) している。その時の層間変形角Rは,1/222であり,側柱 主筋は引張降伏していない。壁板のコンクリート部分の ひび割れはR=1/3333で発生している。その後,ひび割れ は変形の増大に伴い進展し,R=1/500到達時には壁板の ほぼ全域に発生している。それ以降は,ひび割れの増加 はほとんど認められないままR C 試験体のせん断破壊に 至っている。

3.2 タイル仕上げのひび割れ及び剥離分布

Fig.6に一例として, R=1/250(負方向加力の2回目)終 了時におけるRC試験体のひび割れ分布及び各工法による タイル仕上げのひび割れ・剥離分布を示す。

各工法ともR=1/1000(正方向加力の1回目)に至る前 (コントロール: 1/2000, MCR工法: 1/3333, ループボン ド工法:1/1666、インターネット工法:1/2500、ベース ネット工法:1/2000)において既に,RC試験体のせん断 ひび割れの影響を受け,タイル仕上げ面にもひび割れが 認められる。その後,正負方向加力の繰返し及び層間変 形角の増大に伴い,さらにひび割れは漸増し,R=1/250

(kN

a

の繰返し加力終了時には,それぞれFig.6に示すひび割 れ分布を呈する。又,ひび割れは,タイル自体の表面及 び目地の両方に混在して発生している。

剥離は,発生したひび割れ近傍において徐々に確認され始め,R=1/250の繰返し加力終了時には,それぞれ Fig.6に示す剥離分布(網掛け部)を呈した。ただしコントロールでは,ひび割れ近傍以外にも加力初期におい て広範囲に剥離が認められる。

なお,いずれの工法においてもRC試験体の破壊に至る までタイル仕上げの剥落は認められない。

3.3 タイル表面の発生ひずみ

Fig.7に層間変形角とタイル仕上げ面の中央近傍に位 置するタイル表面の発生ひずみの関係を示す。

本実験では、45二丁タイルを横張りで施工したため、 その長辺方向のひずみを横ひずみ、短辺方向のひずみを 縦ひずみとして計測している。R=1/500までの横ひずみ の挙動は、概ね直線的な履歴を示し、最大で100~200× 10⁻⁶程度の圧縮ひずみを示している。しかしながらその 後のR=1/250の繰返し加力によって、横ひずみの挙動は ループ状の履歴を示す傾向にあり、この時、最大圧縮ひ ずみで200~300×10⁻⁶程度を示している。これらの傾向 は、層間変形角の増大に伴いタイル仕上げに発生したひ び割れや剥離によって、タイル表面の発生ひずみが緩和 される傾向にあるためと考えられる。なおいずれの場合 も、横ひずみが縦ひずみより大きい値を示したのは、タ イル形状の影響によるものと考えられる。

3.4 耐震実験後の引張接着強度

Table 4に耐震実験後に浮きを生じなかったタイルの引 張接着強度試験の結果を示す。

いずれの工法においても建築工事共通仕様書³⁾による 後張りタイルの引張接着強度の基準値0.4N/mm²以上の接 着強度を示している。特にインターネット工法の接着強 度が最も大きく,かつそのばらつきも最も小さく,耐震 実験後においても安定した接着性を示している。一方, コントロールでは接着強度のばらつきが他の工法に比べ て大きい。

3.5 層間変形角とひび割れ率・剥離率の関係

Fig.8にRC試験体の層間変形角とひび割れ率の関係 を,Fig.9にRC試験体の層間変形角とタイルの剥離率の 関係を示す。

RC試験体のひび割れは,層間変形角の増大に伴い増加 するが,1/1000及び1/500のサイクル終了時までにはそ の大部分が発生し破壊時のひび割れ率の96.4%を占め る。又,ひび割れの発生はいずれの層間変形角において も正方向の初サイクルに著しい。

一方,タイルのひび割れ率及び剥離率も層間変形角の 増大に伴い増加し、いずれの層間変形角においても正負 初サイクル時での発生が著しい。又これらの増加の傾向 はタイル張り工法の種類によって異なる。即ち、層間変 形角1/1000では工法間に大きな差異は認められないもの の、1/500以降ではその差異が現れ始め、特にコント ロールのひび割れ率及び剥離率が他の剥落防止工法と比 較し大きく増加している。

剥落防止工法間では,いずれの層間変形角においても ひび割れ率の差は約10%の範囲にありほとんど差異が認 められない。しかし剥離率については,1/500以前では 層間変形角の増加が工法間の剥離率に及ぼす影響は小さ いが,1/250では正負各繰返し載荷が工法間の剥離率の 違いに及ぼす影響が明確になっている。

ベースネット工法, MCR 工法及びループボンド工法で は,1/250の初サイクルから破壊時に至るまでにその傾 きに違いはあるものの,連続的に剥離率は増加している が,インターネット工法では,1/250の正負初サイクル

Fig.6 RC試験体のひび割れ分布及びタイル仕上げ面のひび割れ及び剥離分布 Crack and Delamination Pattern of RC Skeleton and Tilings (Story Deformation Angle 1/250)

時に剥離を生じたのみで,繰返し時の新たな剥離は生じ ていない。インターネット工法では層間変形角の増大に 伴うタイルの剥離がひび割れ近傍にしか発生しないのに 対して,その他の工法では,ひび割れ近傍以外の箇所 (ひび割れ間隔内及び壁端部)においても,ひび割れを 伴わない面的な剥離を徐々に生じたことが,その理由と 考えられる。

3.6 RC試験体のひび割れ率とタイルのひび割れ率及び 剥離率の関係

前述の様にRC試験体のひび割れによってタイルにひび 割れを生じるが,工法によりRC試験体のひび割れに対す る隠蔽効果が異なる。そこで既往の研究⁴⁾に準じ算出し た各層間変形角におけるひび割れ隠蔽率の平均値と破壊 時のそれをTable 5に示す。立体繊維材料を用いた工法の ひび割れ隠蔽率が比較的高く,破壊時におけるその大小 関係は,インターネット工法>ベースネット工法>MCR 工法>ループボンド工法>コントロールの順である。

Table 4 タイルの接着強度試験の結果(n=3) Result of Bond Strength Test of Tiling

工法名	平均接着強度 (N/mm ²)	n-1	主な破断状況
コントロール	1.19	0.764	下地モルタルとRC躯体の界面
MCR	1.41	0.351	下地モルタルとRC躯体の界面
ループボンド	1.17	0.129	タイル裏足と張付けモルタルの界面
インターネット	1.74	0.053	下地モルタルとRC躯体の界面
ベースネット	0.80	0.332	タイル裏足と張付けモルタルの界面

Fig.8 層間変形角とひび割れ率の関係 Story Deformation Angle vs. Crack Rate of RC Skeleton and Tiling

			-		-
工法の 種類 びび割れ 隠蔽率(%)	א-חאעב	MCR	ルーフ゜ホント゛	インターネット	ላ [*] -スネット
平均值	63.1	72.7	73.4	76.8	78.6
破壊時	52.4	69.2	64.9	74.1	73.0

Fig.10 RC試験体のひび割れ率とタイルの剥離率の関係 Crack Ratio of RC Skeleton vs. Delamination Rate of Tiling

Fig.10にRC試験体のひび割れ率とタイルの剥離率の関係を示す。層間変形角1/500迄は,RC試験体のひび割れ率に比例してタイルの剥離率も増大するが,層間変形角1/250以後は急激にタイルの剥離率が増大する傾向にあり,2直線(bi-linear)の性状を示す。

3.7 タイルのひび割れ率と剥離率の関係

Fig.11にタイルのひび割れ率と剥離率の関係を示す。 ここで,それぞれのタイルの剥離率-ひび割れ率曲線下 の面積の相対比の逆数をひび割れ・剥離抵抗指数として 定義すると,インターネット工法(3.4) > MCR工法(3.1) > ループボンド工法(2.1) > ベースネット工法(1.7) > コン トロール(1.0)の順となる。

3.8 タイルの接着強度とひび割れ率・剥離率の関係

Fig.12にタイルの接着強度と剥離率の関係を示す。タイルの接着強度は、ひび割れ率とは相関関係が認められないが、剥離率とは比較的高い相関関係(相関係数: 0.8411)が認められる。

3. まとめ

今回の実験結果を整理すると次の様になる。 1)層間変形角の増大に伴いタイルのひび割れ率及び剥離 率は共に増加し,層間変形角1/250以降では工法間の剥 離率に明確な差異が認められる。

2)ひび割れ隠蔽率及びひび割れ・剥離抵抗指数は共にインターネット工法が最も高い。

3) タイルの接着強度は,そのひび割れ率よりも剥離率と 比較的高い相関関係にある。

参考文献

- 建設大臣官房官庁営繕部監修:建築工事監理指針平成 9年版(下巻)pp86~91, (1998.3)
- 2) 馬場明生他:地震時における外装仕上材料・工法の安 全性に関する実大実験(その1~4),日本建築学会 関東支部研究報告集,pp273~336,(1977)
- 建設大臣官房官庁営繕部監修:建築工事共通仕様書平 成九年版, pp197~198, (1997.3)
- 4) 馬場 他:地震時における外装仕上材料・工法の安全 性に関する実大実験」,セメント・コンクリート, pp.18~26, (1978.6)