粉体量の少ない高流動コンクリートのCFT圧入工法への適用

神代泰道 大池 武 川口 徹

Application of Self-Compacting Concrete with a small amount of cement to CFT Pump-up Injection Method

Yasumichi Koushiro Takeshi Oike Toru Kawaguchi

Abstract

Two kinds of Self-compacting concrete with a small amount of cement (350kg/m³ and 425kg/m³) have been developed. And its application to the CFT pump-up injection method was confirmed. With this method, it is possible to inject even concrete with a small amount of cement by improving its flowability. Filling of steel columns with concrete has been inferior at a cement content of 350kg/m³, but excellent at a cement content of 425kg/m³.

Next, for the purpose of confirming filling of steel columns with dense diaphragms, self-compacting concrete with a current amount of 500kg/m³ was injected into steel colum with diaphgrams disposed at 100mm space. This was confirmed to achieve excellent filling.

概 要

粉体量を従来より少ない350kg/m³および425kg/m³とした2種類の高流動コンクリートを開発し,ダイアフラムを有 する角形鋼管に圧入施工実験を行った。また,過密ダイアフラム部におけるコンクリートの充填性を確認するため, CFT圧入工法用として実績の多い粉体量500kg/m³とした高流動コンクリートを用いて,最小間隔を100mmで配置した複 数のダイアフラムを有する角形鋼管に圧入施工実験を行った。その結果,粉体量の少ないコンクリートでも,流動性 を高めることでこれまでと同等の施工性が確認された。鋼管内のコンクリートの充填性は,粉体量を350kg/m³とした コンクリートではやや劣る結果となり,粉体量を425kg/m³としたコンクリートでは良好であった。過密ダイアフラム 部に対しては,これまでと同様の粉体量を500kg/m³とした高流動コンクリートを用いることで,良好な施工性および 充填性が得られることを確認した。

1. はじめに

これまで、QT構造に使用するコンクリートとして は、流動性および分離抵抗性を確保するため粉体量を 500kg/m³以上とした高流動コンクリートを用いてきた。 このコンクリートは、1995年にポンプ圧入工法による実 大規模の施工実験を行い、その施工性および充填性を検 証¹⁾した後、QTEL入工法用コンクリートとして、 これまでに多くの施工実績を持つものである。しかし、 粉体量が多いため、コンクリートの設計基準強度が30~ 42Vmm²程度の中低層向けQFT構造建物に対しては、コス ト面で割高感が強く、そのローコスト化が求められるよ うになってきた。このため必要な施工性および充填性を 確保しつつ、いかにコンクリートの調合上のコストダウ ンをはかるかが課題となった。

今回,粉体量が少ない高流動コンクリートの研究開発 を進め,ほぼその調合の目途が立ったため,CFT模擬柱 を用いた圧入施工実験を行い,その施工性および充填性

を確認した。

また,高層のOFT構造(建築センター評定物件)で は,梁せいの違いやブレースなどの取り付けにより,一 箇所あたり3~5枚のダイヤフラムが100~200mm程度の 狭い間隔で配置されるケースも出てきている。そのよう な過密ダイヤフラム部分における充填性を確認するため にCFT圧入工法用として実績のある高流動コンクリート を用いて圧入施工実験を行った。なお,今回の施工実験 は,これまで圧入口に設けてきた誘導管を使用しないで 圧入した。

2. 粉体量の少ない高流動コンクリート

2.1 特徴

従来の高流動コンクリートのスランプフローの範囲は 50~70cm²⁾であるが,コンクリート中の粉体量が少ない 場合には,分離しやすくなるため,スランプフローはむ やみに大きくできない。しかし,Fig.1に示すように,増 粘効果のある高性能AE減水剤を用いれば,少ない粉体 量ながら高い流動性と分離抵抗性を有するコンクリート が得られる。今回,このような増粘効果のある高性能A E減水剤を用いた高流動コンクリートの開発を行った。 なお,増粘剤を用いても同様の効果が得られるが,投入 手間や製造管理上の問題点があるため,実工事への適用 は難しい。一方,増粘効果のある高性能AE減水剤の場 合には,これまでと同じ方法でよい。

2.2 コンクリートの調合

粉体量の少ない高流動コンクリートとして,普通セメ ントを用いて単位セメント量を350kg/m³および425kg/m³ とした2種類のコンクリート(以下,C350,C425と略 記)について検討することにした。コンクリートの調合 をTable 1に示す。それぞれのスランプフローの設定 は,分離抵抗性を考慮して55±5cm,60±5cmとした。ま た,CT圧入工法用として実績の多い,高炉セメントB種 を用いて単位セメント量を500kg/m³としたコンクリート (以下,C500)には,通常の高性能AE減水剤を用い, スランプフローを60±10cmに設定した。

2.3 コンクリートの性質

Fig.2にコンクリートのスランプフローとOロート流 下時間の関係を示す。スランプフローが増加すると,O ロート流下時間は短く,すなわち,粘性は低くなる傾向 である。C350が最も粘性は低いが,スランプフローが上 限の60cm近くになると,分離抵抗性が低下するため,流 下中に骨材がかみ合い,Oロート流下時間がこれより長 くなる場合がある。

ブリーディング量については,C350では0.1~0.3cc/ m²の範囲であった。C425では0.02~0.1cc/cm²の範囲で あるが,スランプフローが上限値に近くなると0.1cc/ m²を超える場合がある。C500では0~0.04cc/cm²の範囲 である。なお,コンクリートの粘性やブリーディング量 は,使用材料,特に細骨材の影響を受ける³⁾ため注意が 必要である。

沈下試験(150×300の鋼製型枠使用,レーザー変位 計使用)における24時間後の沈下量については,いずれ のコンクリートについてもCFT構造技術指針⁴⁾による規定 値(=2mm)を超えることはなかった。

Fig.3にそれぞれのコンクリートの圧縮強度の発現性 状(標準水中養生)を示す。

3. 実験概要

実験に使用したCFT模擬試験体の概要を Fig.4に示す。C350およびC425を圧入する 試験体は,通常のCFT構造をイメージした 試験体A,Bとした。

C500を圧入する試験体は,開口率を15~ 20%としたダイアフラムが100および150mm の間隔で4枚配置されている試験体Cとし

Fig. 1 粉体量とスランプフローの上限値 Relationship of Powder Content and Maximum of Slump-Flow

Fig. 2 スランプフローとOロート流下時間の関係 Relationship of Slump-Flow and O-Roto Time

Compressive Strength of Concrete

able 1	コンクリ-	- トの調合表

Т

Mix Proportion of Concrete

コンクリート	スランプ				空気		上段	添加率			
記号	(70-)	Gmax	W/C	S/a	量	セメント	下段:	下段:単位容積(L/m3)			
	(cm)	(mm)	(%)	(%)	(%)	種類	W	С	S	G	
C350	55 ± 5	20	50.0	53.4	4.5	Ν	175	350	941	831	1.15
							175	111	359	310	
C425	60 ± 5	20	41.1	52.0	4.5	Ν	175	425	878	831	1.38
							175	135	335	310	
C500	60±10	20	34.0	52.8	3.0	BB	170	500	880	804	1.25
							170	164	336	300	
	 C350 C425にけ増粘作田を有する喜性能 Δ E 減水剤(HS-700E)使										

C500には通常の高性能AE減水剤(HS-700)を使用

Schematic Drawing of Model Test Specimen

た。それぞれの模擬柱は 高さ10mの角形鋼管(鋼 材:SS400)で,通常圧入 口に設ける誘導管は設置 していない。圧入にはピ ストン式ポンプ車(4t車) を用い,配管(B管)長 はおよそ30m,圧入速度 は1.0m/分を目標とした。

コンクリート圧入時には,コンクリート配管の圧力を 測定した。また,鋼管の挙動を把握するため,鋼管に作 用する圧力,ひずみ,膨らみ量について計測した。ま た,一部のダイアフラムの下面には土圧計を設置し,ダ イアフラム下面に作用する圧力について計測した。圧入 後のコンクリート天端の沈下量はレーザー変位計で計測 した。鋼管内の充填性の確認はダイアフラムを含む試験 体を縦に切断し,目視によって行った。また,試験体の 中心部および表面部でコアボーリングを行い,圧縮強度 および単位容積質量を測定した。

4. 実験結果

4.1 圧入状況

Table 2に圧入時の各コンクリートの試験結果を示 す。C350は,目標としたスランプフロー(55±5cm)よ りやや硬めであったが実験に用いた。

すべての試験体において,コンクリートが途中で閉塞 することなく,圧入施工時のコンクリート天端は平面を 保持しながら上昇する様子が観察された。

Table 2に示したように,C350では圧入速度が多少 1.0m/分を超えていたが,その他は目標とした1.0m/分

Table 2 各種コンクリートの試験結果 Properties of Concrete

コンクリト	スラン	/プフロ	— (cm)	0ロート 流下時間	空気量	空気量 CT		T ブリーディン が量 (mm)	
記号	記号 荷卸 筒先 柱頭部 (秒)		(%)	()	(cc/cm^2)		(m/分)		
C350	47.5	43.8	38.3	5.74	3.5	22.0	0.09	1.42	1.30
C425	58.8	56.5	54.5	4.20	4.2	24.0	0.11	0.88	0.87
C500	50.0	50.3	42.8	9.19	2.4	21.5	0.02	1.25	1.00

Pumping Pressure measured on Concrete Pipe

以内であった。すべての試験体について圧入完了後,柱 頭部にはブリーディング水の発生は観察されなかった。

- 4.2 計測結果
- 4.2.1 管内圧力

試験体の圧入高さがmになった時点におけるコンク リート配管の管内圧力をFig.5に示す。この結果から管 内圧力損失を算出した(図中参照)。なお,試験体の圧 入が進んでも,圧力損失の値が大きく変わることはな かった。圧力損失は吐出量によって変わるため,今回得

Fig. 6 吐出量と圧力損失の関係 Relationship of Pumping Rate and Pressure Loss

られたデータを基に,吐出量と圧力損失の関係を求めた。その結果をFig.6に示すが,これは,コンクリートをビンガム体と仮定し,スランプフローとOロート流下時間から,コンクリートの降伏値と塑性粘度を推定した上で,解析的に圧力損失を求めたものである。C350およびC425では,コンクリートの粘性が低いため,従来の高流動コンクリート(C500)に比べて,圧力損失は小さくなる。

4.2.2 鋼管に作用する圧力,膨らみ量,ひずみ

鋼管の側面に設置した圧力計による圧入中の鋼管に作 用する圧力の測定結果をFig.7に示す。C350とC425は同 じ形状の試験体に圧入したが,C350の方が鋼管に作用す る圧力が大きくなった。これは圧入したコンクリートの スランプフローが50cm以下と小さかったためと思われ る。また,ダイアフラムが過密に配置されている試験体 に圧入したC500の場合,ダイアフラムを通過する毎に圧 力が増加した。最終的に鋼管側面に作用した圧力を,コ ンクリートの液圧(=密度×高さ)に対する比(以下, 液圧比)で表すと,C350で1.23倍,C425で1.17倍, C500で1.26倍となり,これまでの誘導管ありで測定し た範囲(1.0~1.3)内であることが確認された。

C425およびC500を圧入した試験体の一部のダイアフ ラムの下面には土圧計を設置し,ダイアフラム下面に作 用する圧力の測定を行ったが,Fig.7に示したように, 圧入中では鋼管の側面に作用する圧力と同様に上昇する 様子が確認された。

鋼管の中央部に生じる膨らみ量および周方向に生じる ひずみは,鋼管断面の一辺を軸力と曲げを同時に受ける 両端固定の部材と仮定したモデルによる(1)式および(2) 式を用いて算出した。その算定結果を測定結果と併せて Table 3に示す。

膨らみ量(中央部):
$$\delta = \frac{w \cdot h(D-2t)^4}{384EI}$$
 (1)式

ひずみ:
$$\varepsilon(x) = \frac{w \cdot h}{2Et^2} \{ 6x(F-x) - F^2 + Ft \}$$
 (2)式

Fig. 7 鋼管に作用する圧力 Pumping Pressure measured on Steel Column

Table 3 測定結果と計算値との比較 Comparison of Measured Value and

Cal	cul	lated	Val	lue
υa	L C U	aleu	va	iue

コンクリト	掘覀	_{概 亜} 圧力 ひずみ		膨らみ量		
記号	饭女	(MPa)	(µ)	(mm)		
C350 —	測定値	0.248	267	0.40		
	比	1.23	1.13	1.12		
0405	測定値	0.212	232	0.35		
0420	比	1.05	0.98	0.97		
C500 -	測定値	0.261	256	0.39		
	比	1.26	1.07	1.08		

比=測定値/計算値

ド高さ, E: 鋼管のヤング率, D: 鋼管の幅, t: 鋼管の板 厚, F: F=D-2t, I: 断面2次モーメント(=t³/12), x: 板厚中心部からの距離, である。

Table 3には,それぞれの計算値に対する測定値の 比を示したが,鋼管に作用する圧力として,液圧比を適 切に設定し,(1)および(2)式を使用することで,膨ら み量およびひずみを評価できる。 4.2.3 鋼管のひずみ分布

Strain measured on the Surface of Steel Column

鋼管に生じるひずみの分布を調査するために,試験体 高さh=0.5mとh=1.25mにおいて,圧入口の側面および対 面となる面の中央部,偶角部にひずみゲージを周方向に 取り付けた。一例としてFig.8に,C350を圧入した試験 体における圧入終了直後の最大ひずみの分布状況を示 す。h=1.25m(図中 と)では,面によるひずみの分 布の違いはほとんどないが,圧入口と同じ高さのh=0.5m (図中 と)では,対面している面の偶角部のひずみ (絶対値)が大きくなる傾向であった。これは誘導管が ないため,圧入口に対面する面のひずみが大きくなった ものと思われるが,その大きさとしては,(2)式による 計算値に,液圧比(この場合1.23)を乗ずれば評価でき る範囲であり,特に過大なものではなかった。

4.2.4 圧入終了後の鋼管の挙動

ー例としてFig.9にC425を圧入した試験体における圧 入終了後からのひずみ,膨らみ量の変化を示す。コンク リートの硬化に伴い,圧入後6~12時間にかけて徐々 に小さくなった。圧入して24時間経過後のひずみは120 µ,膨らみ量は0.16mmであり,文献¹⁾による報告とほぼ 同等であった。

4.2.5 ダイアフラム下面に作用する圧力と沈下量 C425とC500の試験体に設置した土圧計による,ダイア フラム下面に作用する圧力の圧入終了後の挙動は, Fig.10に示すように,コンクリートの硬化に伴って, 徐々に小さくなった。このようにダイアフラム下面に は,圧入後から12時間程度まで,それより上にあるコン クリートのヘッド圧が作用しているため,充填性が確保 されるものと思われる。一方,コンクリートの天端の沈 下量の測定結果をFig.11に示すが,初期の段階において 比較的急激に沈下し,4~5時後にほぼ収束する。このよ うにコンクリート天端においては沈下がみられるが,ダ イアフラム下面においては,コンクリートのヘッド圧が 長時間作用するため,沈下に伴うすき間は生じにくいも のと考えられる。

4.3 充填性確認結果

充填性の確認は各試験体のダイアフラム部において切 断し,目視によって観察した。一例として各試験体の最 上部のダイアフラム部分を切断した状況をPhoto 1に示 す。C425およびC500を圧入した試験体においては,良好

Behavior of Steel Column after injection

Fig. 10 ダイアフラム下面に作用する圧力 Pressure measured under Diaphragm

Settlement measured on the top of Concrete

な充填性が確認された。C350を圧入した試験体では,ダ イアフラム下面に部分的にエアだまりが観察された。ま た,最下部のダイアフラム下面においては3~6mmのすき 間が生じていた。この原因については,ダイアフラムの 開口部において,何らかの理由によりコンクリートの ヘッド圧が伝達されず。コンクリートの沈下に伴うすき 間が発生したと思われる。このようにC350の場合,粉体 量が少ないため充填性が必ずしも充分でない。

4.4 構造体コンクリート試験結果

各試験体から採取したコア供試体による圧縮強度の試 験結果をTable 4に示す。C350およびC425を圧入した 試験体では、ダイアフラム近傍において強度低下が見ら れ、標準偏差が平均強度の9~13%となった。構造体コン クリート強度としては最低でもC350で35Nmm², C425で 42Nmm²確保できた。C500を圧入した試験体では、ダイ

(a)C350

(b)C425 Photo 1 各試験体の充填状況 Filling of Steel Columns with Diaphgrams

アフラム近傍における強度低下もなく,標 準偏差は平均強度の3~5%であった。構造 体コンクリート強度としては最低でも65N/ m²確保できた。単位容積質量は,いずれの 試験体も作用するコンクリートの自重圧が 大きくなる下部ほど大きくなる傾向を示し た。

Table 4 構造体コンクリートの強度試験結果

(c)C500

Compressive Strength of Core Test Specimen

材齢	28日			28日 56日					91日	
コンクリート	個数	平均		個数	平均		個数	平均		
C350	24	46.7	5.92	15	47.2	6.06	7	52.09	6.52	
C425	23	53.6	5.93	15	55.5	7.52	7	61.46	5.66	
C500	8	74.9	3.59	11	76.1	3.73	5	80.86	2.57	

5. まとめ

粉体量を従来より少ない350kg/m³および425kg/m³とし た2種類の高流動コンクリートを開発し、ダイアフラム を有する角形鋼管に圧入施工実験を行い、CFT圧入工法 への適用性を確認した。その結果、粉体量の少ないコ ンクリートでも、流動性を高めることでこれまでと同等 の施工性が確認された。鋼管内のコンクリートの充填性 は、粉体量を425kg/m³としたコンクリートの充填性は良 好であった。粉体量を350kg/m³としたコンクリートで は、充填性がやや劣った。したがって、ダイアフラム下 部の充填性の確保が強く要求される場合にはC350の使用 は避けた方がよい。構造体コンクリート強度は最低でも C350で35N/mm², C425で42N/mm²確保できた。

過密ダイアフラム部におけるコンクリートの充填性を 確認するため,OFT圧入工法用として実績の多い粉体量 500kg/m³とした高流動コンクリートを用いて,最小間隔 100mmで配置した複数のダイアフラムを有する角形鋼管 に圧入施工実験を行った。その結果,良好な施工性および充填性が得られることを確認した。

今回の施工実験においては,全て誘導管を設置しない で圧入したが,特に過大なひずみ,膨らみもなく,これ までの誘導管を設置した場合と遜色ない施工性を確保で きることが確認された。

参考文献

- 大池,時野谷,他:高流動コンクリートによる鋼
 管柱ポンプ圧入工法,大林組技術研究所報, No.53,(1996.6)
- 日本建築学会,建築工事標準仕様書 鉄筋コンク リート工事(JASS5),20節高流動コンクリート, (1997)
- 神代,大池,他:高流動コンクリートのブリーディング特性,コンクリート工学年次論文報告集 Vol.21,No.2,pp445-450,(1999)
- 4) 新都市ハウジング協会: CFT構造技術指針・同解
- 説, (1999)