# 固体音領域における浮床工法の防振効果特性

### 藤沢康仁 縄岡好人

## Vibration Isolating Effect of Floating Slab in Structure-borne Sound Frequency Range

Yasuhito Fujisawa Yoshihito Nawaoka

#### Abstract

A floating slab using glass-wool is generally used for isolating machinery vibration or reducing floor impact sound in buildings. The vibration isolating effect can be predicted from the vibration transmissibility of a single degree-of-freedom, but in the structure-borne sound frequency range, the practical effect is lower than the theoretical value. This report describes the results of applying FEM analysis to predicting the vibration isolating effect of a floating slab. Good agreement was obtained between the FEM and measured results, and the lowering of vibration isolating effect due to the high dimension mode of vibration was well simulated by FEM analysis. Moreover, FEM analysis was applied to 2-stage vibration isolation, which is often used for isolating machinery with a powerful exciting force.

#### 概 要

設備機械室における機器の防振や,ホテル・多目的ビル内で床衝撃音を低減させる場合,グラスウールを緩 衝材とした浮床を用いることが多い。浮床の防振効果量は,実務的には防振系を1質点系と仮定した場合の振動 伝達率から推定するが,固体音が問題となる周波数領域では防振効果は理論値よりも低下することが知られて いる。本報ではグラスウール浮床を用いた防振構造の防振効果の予測にFEMを用いたシミュレーションを適用し た結果について述べた。FEMによる防振効果量の計算値は実測値と良好に一致し,部材の高次モードの影響によ る防振効果の低下を再現できた。また加振力が大きな機器に用いられる2重防振の様に複雑な防振構造にもFEM による防振効果の予測が有効であることを示した。

1. はじめに

グラスウール浮床や防振ゴムなどの防振材の防振効果 量については,一般的には防振系を1質点系と仮定した 場合の振動伝達率から推定することが多い。しかし固体 伝搬音が問題となる周波数領域では,1質点系から求めた 防振効果量よりも実際には大きく低下することが知られ ている。その原因としては,構成部材の高次モードの影響,機器の発生騒音による空気音加振の影響などがあげ られる。これらの要因のうち高次モードの影響について 調べるため,FEMを用いたシミュレーションを行い,実測 値との比較を行った結果について述べる。また加振力が 大きな機器の固体音対策で用いられることのある2重防 振については,その防振特性も未だ明らかになっていな いため,FEMによるシミュレーション及びモデル実験を行 い,防振効果特性を明らかにした。

2. グラスウール浮床のシミュレーション

#### 2.1 計算モデル

グラスウール浮床のFEMモデルをFig.1に示す。床スラ ブ・浮きスラブは4節点シェル要素で,グラスウールはば ねとダッシュポットでモデル化を行った。境界条件は床 スラブの4周を固定支持とし,グラスウールの動ばね定数 と損失係数は実測値を基にTable1のように設定した。要 素分割は要素辺長が対象周波数の曲げ波波長の1/4以下 となるよう行った。防振効果は,防振あり・なしの場合 での設置スラブの振動加速度レベル差(挿入損失)で評 価することとし,各節点における挿入損失値をエネルギ ー平均して算出した。なお計算は汎用FEMソフトを用いて, 単位加振力により浮きスラブ中央を定常加振した場合の 直接定常応答解析を行った。

計算に用いた材料定数をTable1に示す。コンクリート の内部減衰はRayleigh減衰を用い,計算対象周波数範囲 で損失係数が1.4~2%となるように係数を設定した。また グラスウールの動ばね定数と損失係数は,JIS A 6322「浮 床用グラスウール緩衝材」に準拠して測定し,ばね要素 が負担する面積を動バネ定数に乗じて計算を行った。



設置床スラブ(4節点シェル要素,周辺固定支持条件) スラブ上の節点全てにばねとダッシュポットを設定

Fig. 1 グラスウール浮床のFEMモデル FEM Model of Glass-wool Floating Slab

#### 2.2 実験概要

実測を行った防振構造をFig.2に示す。設置スラブは, 2.85×1.65mスパンでスラブ厚は150mmである。設置スラ ブの1次固有周波数は実測値で190Hzであった。浮きスラ ブは,厚さ25mmで密度96kg/m<sup>3</sup>グラスウールを2枚重ねた 上に80mm厚で打設した。防振効果は計算と同様に,防振 あり・なしの場合での設置スラブ裏面の挿入損失で評価 した。振動加速度レベルの測定は,電動型加振器に1/3 オクターブバンドノイズを入力して定常加振した状態で 行った。またインパルスハンマーにより,浮きスラブ上 の駆動点インピーダンスの測定も行った。

#### 2.3 実測値との比較

コンクリートのヤング率の値がFEMによる計算結果に 与える影響について検討するため,浮きスラブ上の駆動 点インピーダンスを計算により求めて実測値との比較を 行った。浮きスラブは周辺の拘束がなくfreeであり,境 界条件が単純であるため実測値との誤差要因が少ないと 考えられる。一般的に用いられることが多い静的なヤン グ率(2.1×10<sup>10</sup>N/m<sup>2</sup>)と動ヤング率(3.3×10<sup>10</sup>N/m<sup>2</sup>)<sup>2)</sup>を与 えた場合の結果をFig.3に示す。計算値と実測値で共に見 られる20Hzでのディップは,浮床層の共振の影響であり, 1質点系を仮定して求めた共振周波数と一致する。20Hz より高い周波数で見られるピークディップは, 浮床層の 高次の共振によるものである。静的ヤング率を用いた計 算値は,周波数が高くなるとピークディップの位置が実 測値と異なっているが,動ヤング率を用いた場合には実 測値との対応が良く,高次モードまで正確に予測できて いることが分かる。これよりコンクリート部のヤング率 には,動ヤング率の値を用いることとした。

浮床の挿入損失について,実測値と計算値を比較した 結果をFig.4に示す。挿入損失の実測値とFEMによる計算 値共に駆動点インピーダンス測定結果とほぼ同一の周波 数でピークディップがあり,浮床層の高次モードの影響 による防振効果の低下が現れている。1質点理論値ではこ の現象は予測不可であるが,FEMを用いることによって精 度良く防振効果量を予測することができている。

| Table 1  | FEMで用いた材料定数 |
|----------|-------------|
| i uoie i |             |

Material Properties Used in FEM

| コンクリート材料定数              |                                               |  |  |  |  |
|-------------------------|-----------------------------------------------|--|--|--|--|
| ヤング率                    | 動ヤング率3.3×10 <sup>10</sup> (N/m <sup>2</sup> ) |  |  |  |  |
| 密度                      | 2250(kg/m <sup>3</sup> )                      |  |  |  |  |
| ポアソン比                   | 0.17                                          |  |  |  |  |
| 損失係数                    | 1.5~2%(Rayleigh減衰を用いた)                        |  |  |  |  |
| グラスウール材料定数(96kg/m³50mm) |                                               |  |  |  |  |
| 動ばね定数                   | 2.67 × 10 <sup>6</sup> N/m <sup>3</sup>       |  |  |  |  |
| 損失係数                    | 0.19                                          |  |  |  |  |





Fig. 2 浮床の実験モデル



4 10 Frequency(Hz) 100 500 Fig. 3 浮きスラブ中央の駆動点インピーダンス Driving Impedance of Floating Slab



Fig. 4 浮床挿入損失の計算値と実測値の比較 Comparison of Measured and Calculated Insertion Loss of Floating Slab





#### 2.4 床スラブの影響についての検討

床スラブの振動特性が浮床の振動特性に与える影響に ついて調べるため,FEMを用いて,同一の浮床層に対して 床スラブ厚さを変化させた場合についてのシミュレーシ ョンを行った。Table2に示すように,浮床層の共振周波 数が19.4Hz,床スラブの固有周波数が19.3Hz ~ 38.6Hzま での4ケースを対象とし,比較のために床スラブを剛とし た場合も計算した。なお固有振動数の())内の値は, 浮床の質量が付加された場合の予測値である。

床スラブをA~Eとした場合についての,浮きスラブ中 央のインピーダンスと浮床中央加振点から床スラブ中央 点への伝達インピーダンスをFig.5に示す。

浮きスラブ上のインピーダンス特性は,床スラブA・B では浮床の質量を付加した場合の1次固有周波数でのデ ィップが見られるが,床スラブC・Dの場合には,床スラ ブの影響は無く,床を剛とした場合とほぼ同じである。 床スラブが浮床層に比較して剛な場合には,浮きスラブ 上では浮床層の振動特性が支配的になるためと思われる。

また伝達インピーダンスのディップは、A・Bスラブで は浮床の質量を付加した場合の床スラブ固有周波数付近 と、27Hz付近にある。27Hz付近のディップは、浮床層の 共振周波数が床スラブのばねの影響を受けて移動したも のと思われる。またC・Dスラブでは床スラブの1次固有周 波数付近と、浮床層の共振周波数19.4Hzにおいてディッ プが現れている。

浮床層に床スラブの曲げばねを考慮して2質点系と仮定し,床スラブ厚さを変化させた場合の振動伝達率の理論値をFig.6に示す。床スラブが浮床層に比べて剛な場合には,浮床層の1質点系の共振周波数19.4Hz付近で共振するが,浮床層の方が剛な場合には共振周波数は27Hz付近



# Table 2 計算に用いた床スラブ厚と 1次固有周波数

Thickness & First Natural Frequency

|                                        | of Base Slab |          |
|----------------------------------------|--------------|----------|
| 浮床層                                    | 浮きスラブ        | 0.08m    |
|                                        | 緩衝層          | 96k-50mm |
|                                        | 共振周波数        | 19.4Hz   |
| 床スラプ1次<br>固有周波数<br>(5.8×4.8m,<br>単純支持) | A - 0.15m    | 19.3Hz   |
|                                        |              | (15.6Hz) |
|                                        | B - 0.2 m    | 25.7Hz   |
|                                        |              | (21.8Hz) |
|                                        | C - 0.25m    | 32.2Hz   |
|                                        |              | (28.0Hz) |
|                                        | D - 0.3 m    | 38.6Hz   |
|                                        |              | (34.3Hz) |
|                                        | E - 剛        | -        |

a. 浮床層共振周波数 > 床スラブ1次固有周波数



b. 浮床層共振周波数 < 床スラブ1次固有周波数





へと移行している。この共振周波数は,床スラブ厚さに よらずほぼ一定の値となっているが,浮床層・床スラブ の共振周波数・2質点の質量比の関係により決定されるも のである。



Fig. 7 2重防振の実験モデル Measured Model of 2-Stage Vibration Isolation

Table 3 材料定数と共振周波数 Properties & Resonance Frequency

| PC基礎防振系      | 防振ゴム   | 動ばね定数                         | $8.47 \times 10^5$ N/m |
|--------------|--------|-------------------------------|------------------------|
|              |        | 損失係数                          | 0.1                    |
|              | 共振周波数  | 12Hz                          |                        |
| グラスウール<br>浮床 | 浮きスラブ  | 80mm                          |                        |
|              | グラスウール | 96kg/m <sup>3</sup> -25mm × 2 |                        |
|              | 共振周波数  | 19.4Hz                        |                        |

#### 3. 浮床を用いた2重防振構造の防振効果

Fig.7に示すような、グラスウール浮床の上にPC基礎を 防振ゴムで4点支持した2重防振構造の防振効果について、 モデル実験とFEMによるシミュレーションを行った。PC 基礎はシェル要素で、防振ゴムはばねとダッシュポット でモデル化し、2.1節の浮床モデル上に配置した。防振ゴ ムの動ばね定数と損失係数は、インパルスハンマー加振 で実測した減衰波形から算出した(Table3)。

2重防振の挿入損失についてのFEM計算結果,2質点系理 論値及び実測値をFig.8に示す。グラスウール浮床とPC 基礎防振のみの挿入損失も併せて示す。

PC基礎防振の挿入損失は315Hz帯域で大きく落ち込ん でいるが, PC基礎の1次固有周波数が370Hz付近にあるこ との影響である<sup>3)</sup>。2重防振では100Hz以上の周波数で2質 点系理論値よりも防振効果は低下し,315Hz帯域で大きな ディップが現れている。これは,浮きスラブの高次の固 有周波数とPC基礎の1次固有周波数が共に315Hz帯域にあ るために,防振効果の低下が大きく現れたと考えられる。 FEM計算値は実測値と良好に一致しており,高い周波数域 での防振効果の落ち込みをよく再現できている。

#### 4. まとめ

グラスウール浮床を用いた防振構造の防振効果の予測 に、FEMを適用し実測値との比較を行った。FEMによる防振



Fig. 8 2重防振の防振効果量

Insertion Loss of 2-Stage Vibration Isolation

効果量の計算値は実測値と良好に一致し,2重防振のよう に複雑な防振構造の予測にも適用できることを示した。 またモデル実験とシミュレーションにより,防振系を構 成する部材の高次モードの影響で,固体音領域の周波数 域で質点系理論値よりも防振効果が低下することを明ら かにした。

#### 参考文献

- 井上,他:床衝撃時におけるコンクリート浮床構造の振動伝達特性に関する研究,日本建築学会計画系 論文報告集,第352号,pp.10~19,(1985)
- 2) 安藤:各種床構造の振動応答特性の予測とその応用 に関する研究,博士論文,pp.64~69,(1993)
- 3) 平松,他:防振材の防振効果に関する検討,騒音制 御 Vol.21 No.4,pp.263~272,(1997)
- 藤沢,他:固体音領域における浮床の振動伝達特性の予測,日本騒音制御工学会講演論文集,pp.49~ 52,(1999)
- 5) 藤沢,他:浮床を用いた2重防振構造の防振効果特性, 日本建築学会大会梗概集,pp.301~302,(2000)