格子ボルツマン法を用いたコンクリートの溶脱解析に関する研究 人見尚竹田宣典 入矢 桂史郎

Study of Leaching Analysis of Concrete using Lattice Boltzmann Method

Takashi Hitomi Nobufumi Takeda

Keishiro Iriya

Abstract

The lattice Boltzmann method (LBM) is a new numerical analysis method for mass transport and flow. This report describes the results of LBM examination of calcium leaching in concrete. Using LBM to determine calcium diffusion based on a chemical model of concrete leaching, we compared the analysis results with those of past reports, and confirmed the effectiveness of this method. In addition, for the actual concrete, we also analyzed the calcium diffusion in the concrete-like medium in which the aggregate was placed. This shows that simulations of concrete leaching become possible in the inhomogeneous medium which contain cracks and aggregate in the concrete.

概 要

拡散や移流等の物質移行の解析法である格子ボルツマン法(LBM)をコンクリート中のカルシウム溶脱の予測 解析に適用することを検討した。これまでに示されている溶脱のメカニズムを用い,格子ボルツマン法を用い た溶脱解析と,差分法による既出解析との比較を行った。その結果,ほぼ同等の結果を与えるのみならず,LBM を用いた3次元解析が,差分法による1次元の解析と同等の時間で計算実行できることを確認した。また,溶 脱解析では,これまでコンクリートを均質媒体としてしか扱えなかったが,粗骨材を模擬した球体を導入した 溶脱解析が可能であることを示した.これによりLBMを用いることにより,ひび割れや粗骨材といった不均質性 を取り込んだ複雑境界を含むコンクリート溶脱解析が実行可能となることを示した。

1. はじめに

構造物の健全性の長期的把握の需要が高まっている。健 全性把握を必要とする事例として,放射性廃棄物処分場等, 数万年オーダーの品質を予測し設計を行う必要のある施 設や,ダムなど数十年を経た長期供用の構造物があり,こ れらに対して構造物の現状診断と余寿命予測が求められ ている。

放射性廃棄物処分場やダム等の供用期間は数十年から 数万年に及ぶ。このような期間の劣化現象の研究手段とし ての促進的実験手法は、手間がかかること,実験の促進倍 率や実現象との評価が難しい等の問題が指摘されている。 このような数万年のスパンのコンクリート品質の予測解 析手段の開発がのぞまれている。

本研究の目的は,劣化現象のうち特に長期的な現象であるコンクリートの溶脱の解析予測法の確立である。これまでの解析法¹⁾はコンクリートを均質媒体と捉え、本来局所的な溶解現象をマクロな領域で扱うために,実現象を忠実に表しているものではなかった。

このことの原因の一つとして、コンクリートの骨材やひ び割れという不均一性がある.従来解析法においてこれら を考慮した複雑な境界条件の下での実行は事実上不可能 であった。近年,新しい解析手法として複雑形状を少ない 計算負荷で扱うことのできる格子ボルツマン法(Lattice Boltzmann Method : LBM)¹⁾が提案されている。本報告で は,既出の化学モデル²⁾に基づき開発したLBM解析ソフト を用い,モルタル試料の溶脱解析を行った。既出解析結果 との比較とコンクリート溶脱解析の適用性について検討 を行った。

2. LBMの概要

LBMとは,空間を分割し代表点での値のみを求める離 散的数値解析法で,流体や拡散体の濃度や密度を分布関数 と呼ばれる各方向のスペクトル量に分解し,その量を隣接 する各格子点の間でやり取りし,物理現象を再現する解析 法である。LBMは,セルオートマトンに起源をもち,格子 ガス法から発展した解析法である。LBMの支配方程式は一 定のレイノルズ数以下などの条件の下で流体や拡散の方 程式と等価であることが数学的に示されている。

2.1 支配方程式と分布関数

格子点上に分布関数と呼ばれる値を配置し,単位時間ご とに隣接する格子点との間で分布関数のやり取りを行う。 式(1)にLBMの支配方程式を示す。 $f_i(x+c,t+1) - f_i(x,t) = \Omega(f_i(x,t))$ (1)

左辺に現れるf_i(x,t)はある時刻における分布関数と呼ばれ,密度を方向成分に分解した成分を表している。繰り返し計算の時間刻みあたりの量であるため,これを速度分布にあたる。

方向成分は通常隣接する格子点に向かうものを採り,そ の点の取り方で様々なモデルが存在する。通常はFig. 1 に示す,第一近接格子と対角方向の第三近接格子方向およ び静止を表す自分自身への長さ0の速度を採り,これを3 次元15速度モデル(3D15Vモデル)と表現している。格子の 形状も2次元では三角格子や正方格子など様々な採り方が あり,それに伴い様々なモデルが存在する。速度方向を多 く採ることは計算精度を向上させることに繋がるが,計算 負荷を増やすことにも繋がる。

LBMでは無次元化された長さと時間を用いており,x+c はある座標xから速度×単位時間の距離だけ離れた格子点 の座標を,t+1ある時刻tから単位時間だけ経過した時刻を 示す。右辺は衝突項と呼ばれる関数である。

LBMでは,無限遠では密度は平衡状態にあると考え,隣 接点からの伝播は,粘性係数や拡散係数に応じ,平衡状態 と重み付け平均で伝わる機構となっている。衝突項はその ような平衡状態を加味する項となっている。LBMにおける 平衡状態は,流体であればボルツマン分布を,拡散であれ ば一様分布をあたえている。衝突項を式(2)に示す。

$$\Omega(f_i(x,t)) = -\frac{1}{\tau} \Big[f_i(x,t) - f_i^{eq}(x,t) \Big]$$
⁽²⁾

LBMの大きな利点を以下にまとめる。

- 比較的粗いメッシュでも良い精度の解が得られること。
 これは,各格子点に分布関数という多成分の情報をもたせていることに起因する。
- 2) 複雑形状の伝播問題を容易に扱えること。これは隣接 する格子点との分布関数のやり取りであるために,全 体のFEMにおける剛性マトリックスを求める必要がな いことに起因する。
- そして移流と拡散を連成し同時に解けることが挙げられる。格子ボルツマン法における移流と拡散方程式が ほぼ同等に表現でき,同様の演算で求められることに 起因する。

これまで,コンクリートを対象とした劣化解析には困難 であった粗骨材やひび割れの材料モデルが,LBMでは容易 に実現できる。

3. コンクリート溶脱モデル

3.1 溶脱モデル

本報告で用いたコンクリート溶脱モデル¹⁾をまとめる。 このモデルのコンクリートの溶脱は,セメントペースト部 分で起こるとし,セメントペーストはCa(OH)₂(以下CH)とC a0,Si0₂およびH₂0からなる水和物(以下CSH)で構成されて

いる。溶脱は,Fig. 2に示すように可溶性のCHが選択的に 先行して溶解し,CHが消失した後でCSHの溶解が発生する とした。このモデルのコンクリートの溶解は,カルシウム (以下Ca)の拡散による濃度変化のみに注目している。式 (3)に示す支配方程式はCaの濃度Cに関する非線形拡散方 程式で表される。

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - U \frac{\partial C}{\partial x} + R$$
(3)

右辺第一項はカルシウムの拡散を表し,Dは拡散係数で ある。第二項はコンクリート中の媒質の移流を表し,Uが 流速である。Uは別途流体の方程式よりコンクリート中の 移流を求める必要がある。Rはコンクリートからの溶解や 沈殿に関する項である。

3.2 Caの溶脱メカニズム

溶脱は各格子点での現象とし,各格子点での質量の収支 を求めた。拡散の媒質は,細孔に含まれる水分とした。

媒質を考慮した正味のCa濃度C,は,簡易法であるがセメント密度と含水率を用い式(4)に示す関係より求めている。

. .

$$C_r = C \cdot \rho t \cdot \omega / (100 + \omega) \qquad \text{[mol/m3]} \qquad (4)$$

ここで, tはセメント密度[10³kg/m³], はコンクリ ートの含水率[%]である。

拡散によって低下した局所的な細孔溶液中のCa濃度Cr とCaの飽和濃度の差を、ペースト部分の溶解で補充する機構とし、CH、CSHの順に溶解するものとした。CHやCSHの溶 解速度に関しては詳しい知見が得られていないため、CH は細孔溶液の飽和濃度を常時満たすように飽和濃度とCa 濃度の差の全量が、CSHに関しては細孔溶液の飽和濃度と の差の1割の分量を補充するだけの量が計算ステップご とにCHとCSHから溶解するとこの比率を変えた感度解析よ り仮定した。

CHが残存している場合の細孔溶液の飽和濃度は,水中の Ca飽和濃度にほぼ等しい20mol/m3であるが,CHが消失し, CSHの溶出フェーズの場合の細孔溶液のCaの飽和濃度は,B ernerによって検討³⁾がなされており,Fig.3に示すような 関数関係を満たすことが示されている。既出研究1)では, この飽和濃度C₀は,ペースト部分に残存するCaとシリコン (以下Si)の比すなわちCa/Si比の関数として式(5)で与え た。CSHの分子式よりCSHが完全に残存している場合のCa/ Si比を2としている。

$$C_{0} = \begin{cases} 20 & 1.8 \le C / S \\ 30.3C / S - 28.2 & 2 \le C / S < 1.8 \quad [mol / m^{3}] \\ 2 & C / S < 2 \end{cases}$$
(5)

CHの溶出フェーズの細孔溶液の飽和濃度は,Ca/Si比が2 以上の状態にあたるとして20[mol/m³]とした。飽和濃度を 超えたCaはその場所で再析出するとした。

3.3 溶脱に伴う拡散係数の変化

拡散方程式に用いる拡散係数D[m²/s]は,式(6)で与えら れる。D₀およびD₁は溶脱を起こしていない未変質部のと溶 脱を起こした部位の拡散係数,CH_xおよびCH_iは各位置と未 変質部のCH量[mo1/m³]を表す。

$$D = D_0 + (D_1 - D_0) \cdot (1 - CH_x / CH_i)^2$$
(6)

コンクリートの拡散係数を正確に測定した例はほとん ど存在しない。特に溶脱部はダムコンクリート等の自然 現象でも約70年経過時でも高々20mm程度となっており⁵⁾, その狭い幅で急激に変質状態が変化している。このような 急激な溶脱状態の変化,すなわち,拡散係数の変化を精密 に把握する方法の確立が必要である。

CSHの溶解は,メカニズムを含め拡散係数への影響は明

らかでない。本モデルでは溶解後もCSH中のSi02組織のほ とんどが残存すると仮定し,拡散係数もCSHの溶解フェー ズではCaの残存量には依存しないと仮定した。

3.4 端部での外部水へのCaの流出

コンクリートが外部水に接する部分では,常に濃度0の 外部水にCaが溶出すると仮定している。コンクリート端部 から外部水への流出については,元のモデルでは水接する 端部に純水の拡散係数を局所的に与えているのに対し,本 解析ではCaの透過速度を与えている。透過速度の考え方は, 熱伝達の問題でも熱源からの周囲へ散逸で異なる物質間 の熱の交換で同様の扱いをしており,そのアナロジーであ る。純水中への透過速度は1.0×10⁻⁷[m/s]となる。この値 はCaの水中の拡散係数を参考に感度解析より決めた値で ある。

4. LBMによる溶脱解析の概要

前章で紹介したコンクリート溶脱モデルをLBMに移植した。ここでは拡散LBMの概要をまとめる。支配方程式導出の詳細はInamuro⁴⁾の文献による。

4.1 LBMでの支配方程式

LBMによるコンクリート内の水分移流の方程式は式(7) に示される。Fiは移流に関する分布関数である。 (は緩 和係数と称し,水の粘性係数で定まる値である。

$$f_i(x+c_i\Delta x,t+\Delta t) - f_i(x,t) = -\frac{1}{\tau_f} \left[f_i(x,t) - f_i^{eq}(x,t) \right]$$
(7)

コンクリート内のCaの拡散のLBM方程式は,gを分布関数として式(8)に示される。 gは同様に緩和係数で,Caの拡散係数で定められる。

$$g_{i}(x+c_{i}\cdot\Delta x,t+\Delta t) - g_{i}(x,t) = -\frac{1}{\tau_{g}} \left[g_{i}(x,t) - g_{i}^{eq}(x,t)\right] + 3E_{i}g_{det}\Delta x$$
(8)

右辺第二項が溶解および析出に関する非線形項である。 E_iは分布関数のモデルで定まる重み定数である。本解析で はFig. 1に示す3次元15速度(3D15V)モデルを採用した。 xは代表長さを基準にとった格子間隔である。g_{det}はCHやC SHの溶解および析出量で,これらの掛け合わせで非線形項 を構成する。溶出メカニズムは3.2節に示したものを用い た。分布関数と密度 ,速度uおよびエネルギーeとの関係 は式(9)に示される。gも同様である。

$$\mathcal{D} = \sum_{i} f_{i} = \sum_{i} f_{i}^{eq} , \quad \rho u = \sum_{i} f_{i}c_{i} = \sum_{i} f_{i}^{eq}c_{i} , \\
 \rho e = \frac{1}{2}\sum_{i} f_{i}(c_{i} - u)^{2} = \frac{1}{2}\sum_{i} f_{i}^{eq}(c_{i} - u)^{2}$$
(9)

移流と拡散に関する平衡分布関数f^{eq}とg^{eq}の具体的な表式 は式(10)および式(11)に示される。

Table 1	解析に用	いた試	験体	の諸量
Quantities	of Test	Piece	for	Analysis

	,
諸量	
単位容積質量	2.16 [g/cm ³]
含水率	12.7 [%]
Ca ²⁺ 濃度	20 [mmol/l]
Ca(OH)₂濃度	1.88 [mol/l]
CSH 濃度	2.95[mol/l]
CSHの分子量	212
拡散係数(健全部)	1.0×10 ⁻¹² [m ² /s]
拡散係数(溶脱部)	$1.7 \times 10^{-10} [m^2/s]$
透過速度	1.0×10 ⁻⁷ [m/s]

Table 2	訂昇余件	
Condition of Analysis		
諸量		
忒験体幅(Ⅹ方向)	0.18 [cm]	
ば験体幅(Υ方向)	0.18 [cm]	
試験体厚さ	1.2 [cm]	
格子間隔	0.03 [cm]	

1000 [s]

2000日分

$$f_{i}^{eq}(x,t) = E_{i}\rho \left[1 + 3c_{i} \cdot u + \frac{9}{2}(c_{i} \cdot u)^{2} - \frac{3}{2}u \cdot u \right]$$
(10)
$$g_{i}^{eq}(x,t) = E_{i}\rho (1 + 3c_{i} \cdot u)$$
(11)

時間刻み

計算時間

ここで,E_iは重み定数, は媒質およびCa密度,cは隣 接格子への方向ベクトル,uは媒質である水分の流れの速 度を表している。式(10)はボルツマン分布を速度uに関し テイラー展開し2次以上の項で近似したものである。

式(11)に見られる拡散に関する平衡分布関数には移流 から求まる局所的な媒質の速度が入っている。これによっ て,コンクリート中水分の見かけの粘性係数の把握が必要 となるが,骨材やひび割れなどの複雑形状ではほぼ不可能 であったコンクリート内の水分の移動に伴う局所的な速 度場の把握が可能になった。

水分の粘性係数 およびCaの拡散係数Dと緩和係数の関係は式(12)に示される。

$$v = \frac{1}{3} \left(\tau_f - \frac{1}{2} \right) \Delta x \qquad D = \frac{1}{3} \left(\tau_g - \frac{1}{2} \right) \Delta x \tag{12}$$

4.2 境界条件

解析に用いたコンクリートのモデルは,無限長の平板を 仮定している。水平方向には,一方の端部が反対の端部に 連続する周期的境界条件を課している。Fig. 2 の右端に 相当する外部水に接する端部では,透過速度を与え⁶⁾,端

部の細孔溶液中の Ca が濃度に応じて外部に流出するよう な状況を模擬している。反対側の端部はコンクリート内部 を模擬し, Ca 濃度や CH および CSH 量をすべての値を固定 する境界条件を課している。

5. 解析結果

対象としたのは、純水に接するモルタルの溶脱状況であ る。溶脱解析を行い、Caの濃度分布やCa/Si比を結果とし て求め、既出結果¹⁾との比較によって評価を行った。計算 に用いた諸量をTable 1に示す。また計算条件をTable 2 に示す。Fig. 2に示すモルタルモデルで面方向に縦が0.1 8cm、横が0.18cm、深さ方向に1.2cmの直方体を計算領域と した。縦横方向には周期的境界条件を課したので、無限平 板の一部を用いた深さ方向の1次元解析にほぼ相当する。 溶脱は右側端部の面方向から発生するとした。 計算は、2000日後の結果までを求めた。細孔溶液中のCa の濃度のグラフをFig.4に示す。

横軸は水接している境界面を原点に試験体の深さ方向 を正にとり,縦軸に濃度を表す。グラフはFig. 2と左右が 反転する表示になっている。端部から深さ1.5mm程度の範

Fig. 6 深さ方向の残存CSH量分布 Distribution of Remaining CSH in Depth Direction

Distribution of Ca/Si ratio in Depth Direction

囲で濃度の低下が見られる。また,CHやCSHから溶解によるCaの供給があるために,濃度低下は端部近傍のCHやCSHの残留量に比べ狭い範囲に限られている。Fig.5にペースト部分の残存CH量を示す。横軸は深さ方向,縦軸は残存CH量を表す。CH量は内部まで若干の変動を伴いながら溶解している。

内部のCH濃度にも変動がみられるため,結果からの厳密 な判定は難しいが,およそ5~6mmの範囲のCHに変化が生じ ていると考えられる。この値をもって一般的に溶脱範囲と することが多い。CHの消失に引き続きCSHの溶解が始まる。 Fig. 5と同様に,Fig. 6にペーストに残存するCSH量を示 す。端部から1.5mm程度の溶脱が見られる。CSHの消失でセ メントペースト組織は消失する。Fig. 7にペースト部分に 残ったCaとSiの比を示す。これも同様に1.5mm程度の溶脱 範囲となった。ほぼ同様の条件で差分法により解いた既出 解析結果においてCaとSiの比の溶脱範囲は4mm弱となって おり,本解析よりも大きい値となった。これらは,端部で の流出速度やCSHの溶解割合の設定に起因すると考えられ る。これらについては今後の課題としたい。

6. 骨材を含む場合の解析結果

本解析では、計算領域中に骨材などの不均質な領域を設

Table 3	解析に用いた試験体の諸量	Ē
---------	--------------	---

Quantities of Test Piece for Analysis

諸量	
拡散係数(健全部)	$1.0 \times 10^{-10} [m^2/s]$
拡散係数(溶脱部)	1.0×10 ⁻⁸ [m ² /s]
流出速度	1.0×10 ⁻⁶ [m/s]

Table 4	計算条件
---------	------

Calculation Condition		
諸量		
試験体幅(X 方向)	0.72 [cm]	
試験体幅(Y 方向)	0.72 [cm]	
試験体深さ	1.8 [cm]	

Fig. 8 解析領域の外周部のCa/Si比 Ca/Si ratio of Analytic Area

けることが可能である。実コンクリートを対象とした溶脱 解析には骨材やひび割れの存在が大きく影響する。ここで は,骨材を考慮した場合の解析例を示す。

骨材として模擬的に直径8mmの球を配置した。今回は球 の径を同一としたが,実際の粒度分布と分散に従った骨材 の配置が可能である。骨材を模擬した球は乱数によって中 心位置を決め,互いの間隔が一定距離以上になるように配 置した。球との境界条件は,速度0境界,および濃度勾配0 境界を用いた。骨材とモルタル境界には,遷移体を模擬し た領域を設けた。この領域は,遷移帯が数百μmの幅であ るといわれていることから,今回は球に接するモルタル境 界に存在する格子点を遷移帯に属するとして扱っている。 遷移帯での拡散係数に関する知見はほとんど得られてい ない。このため,その値をTable 1に示した拡散係数の10 倍と試行的に設定した。遷移帯での拡散係数を求めること は今後の課題である。その他,前章から変更した試験体の 諸量と解析条件をTable 3とTable 4に示す。

今回の結果は,結果を強調するために,変質部の拡散係 数を1.0×10^{-10m²}/sに設定した。解析規模は,水平方向が0. 72cm四方で,深さ方向が1.8cmの直方体とした。配置した 骨材は5個である。Fig. 8とFig. 9にC/Sの断面分布,Fig. 10とFig. 11に残存CH量と残存CSH量の断面分布を示す。 拡散係数や遷移帯の効果は模擬的に与えたもので,この結 果をもって定量的な判断はできないが,複雑境界条件の下 での溶脱解析が可能になったことが示されたと考える。

本解析法は,これまで考慮されていなかった粗骨材の溶 脱に対する影響や,ひび割れが入ってしまった場合の拡散 係数が急激に変化する場合の溶脱範囲の予測を,現実的な 条件設定で可能にし、溶脱予測の精度向上と共にさまざま な条件設定に関する自由度の拡大をもたらすと考えられ る。

7. まとめ

本報告の成果を以下にまとめる。

LBMのコンクリート中カルシウムの溶脱現象への適応性 を検討した。その結果,以下に示すことが明らかになった。

- LBMの利点は、同様の計算規模であれば、従来法の1 次元計算の時間で3次元計算の実施が可能であること、 比較的粗いメッシュでも精度の良い解が得られること、 複雑境界を自由に設定できるため、骨材やひび割 れなどを容易に考慮できることである。
- 2) 非線形拡散LBMを用いて既存の劣化モデルによる溶脱 解析を行い,計算結果を過去の計算例と比較を通じ評価 を行った。
- 3) 従来法の結果より溶脱が抑制される結果となった。骨 材を入れた複雑境界においても,解析実行可能であるこ とを示した。

今後の展望をまとめる。

- 実験結果を正しく再現できるようにソフトウエアを改 善することが必須である。
- その後,計算規模の拡大を図り,長期劣化に伴う大き な規模の劣化現象を扱う。
- 3)数十センチ単位での解析が可能になれば粗骨材等の解 析も可能になる。また,ひび割れなども考慮に入れることが可能になる。

参考文献

- 1) 蔦原道久,高田尚樹,片岡武:格子気体法・格子ボル ツマン法,コロナ社、1999
- 2) 斉藤裕司, 辻幸和, 片岡浩人:セメント水和生成物の 溶解に伴う変質予測のモデル化, コンクリート工学論 文集, Vol.1, No.1, pp.51-59, 2000
- Berner, U.R.: Modelling Porewater Chemistry in H ydrated Portland Cement, Mat. Res. Soc. Symp. P roc, Vol.84, pp.319-330, (1987)
- Inamuro, T., Yoshino, M., Inoue, H., Mizno, R., Ogino, F.: A Lattice Boltzmann Method for a Bi nary Miscible Fluid Mixture and Its Application to a Heat-transfer Problem, J., Comp., Phys., Vol.179,pp.1-15, (2002)

Fig. 9 Ca/Si比の断面分布 Distribution of Ca/Si ratio in Cross Section

Fig. 10 CH量の断面分布 Distribution of CH in Cross Section

Fig. 11 CSH量の断面分布 Distribution of CSH in Cross Section

- 5) 蓮本清二, 内田善久, 原雅人, 谷智之, 池谷貞右, 斉 藤裕司, 三好悟: 水和生成物の地下水への溶脱に伴う コンクリート長期劣化に関する調査, 土木学会第56 回年次学術講演会概要集, Vol.2, pp70-71, 2001
- 6) Yoshino, M., Inamuro, T.: Lattice Boltzmann sim ulations for and heat/mass transfer problems in a three-dimensional porous structure, Int. J. Numer. Meth. Fluids, Vol.43, pp.183-198, (2003)