低振動・低騒音を達成した耐震補強工法「3Q-Wall[®]」の開発(その 2)

-プレキャストコンクリートブロックと FRP ブロックを併用する増設耐震壁-

 栗田康平 増田安彦 木村耕三
 萩尾浩也 三浦 憲 (本店ビルケアセンター)

Development of Low-Noise and Low-Shake Retrofitting Methods "3Q-Wall" (Part2)

-Seismic Retrofitting Shear Wall to Hybridize PCa Blocks and FRP Blocks-

Kohei Kurita Yasuhiko Masuda Kohzo Kimura Hiroya Hagio Ken Miura

Abstract

A "3Q-Wall" composes of easily constructed PCa blocks or FRP blocks that can take day lighting, is developed as a seismic retrofitting method that provides Quiet, Quick construction and high-Quality shear walls. These two kinds of blocks are hybridized to produce larger openings in a "3Q-Wall". Side walls of PCa blocks are constructed next to columns and FRP blocks are laid in the opening between side walls. The reinforcement effect of this hybrid wall is confirmed by experiments on single-story shear-wall specimens of various areas and thicknesses of FRP blocks. In the experiment, the PCa and FRP walls behave as one member. The failure states of the specimens differ depending on the strength of the adhesive joint between the PCa and FRP blocks, and the ultimate strength is estimated by summing the strengths of the two parts of the hybrid wall.

既 要

小型のプレキャストブロックやガラス繊維強化プラスチックブロックを組積する 3Q-Wall は、低騒音・ 低振動で、短工期、かつ高品質な耐震補強壁として開発された。この 3Q-Wall に、より大きな採光面積を 設けるため、そで壁状に設けた PCa 壁の開口部に、採光が可能な FRP ブロックを組積する、PCa-FRP 複 合壁を開発し、その補強効果を実験で確認した。実験には、FRP ブロックの組積面積と、FRP 壁厚さを実 験変数とした一層壁せん断試験体を用いた。その結果、PCa-FRP 間の境界接着部の耐力によって破壊モ ードが異なる事、終局耐力は破壊モードをモデル化した各構成要素の耐力の累加で評価できる事が明らか となった。

1. はじめに

近年の耐震補強工事では、建物を使用しながらの作業 がしばしば求められる。しかし従来の耐震補強工法では 対応が困難なため、騒音や振動を抑制でき、補強条件に 柔軟に対応できる工法が求められた。こうした背景から 筆者等は、プレキャストコンクリートブロック(以下 PCa ブロックと記す)やガラス繊維強化プラスチックブロッ ク(以下 FRP ブロック)を組積する耐震補強工法を開発し た^{1)~2)}。しかし PCa 壁に採光を目的として開口を設ける と耐力の低下が著しく、FRP 壁は採光性には優れている ものの剛性・耐力は PCa 壁には及ばない。そこで Photo 1 に示すように、そで壁状に設けた耐震壁の中央開口部に FRP 壁をはめ込む事で、採光性と耐力を両立させる PCa ーFRP 複合補強壁(以下複合壁)の開発を試みた。本報 では、複合壁で補強した一層壁試験体のせん断加力実験 で確認した補強効果を報告する。

2. 実験概要

2.1 実験計画および試験体形状

試験体概要を Table 1 に、使用材料および樹脂の接着強

Appearance of 3Q-Wall (Hybrid-wall)

度を Table 2~5 に,試験体形状を Fig.1 に示す。実験因子 は、(1)採光部となる FRP 壁面積(等価開口周比 n=0.34~ 0.59, 一般 RC 耐震壁に設けられる n=0.4 よりも大きい場 合も設定)と、(2)FRP 壁厚さ(PCa 壁厚と同等(FRP ブロッ ク2層)と約半分(1層))とした。これらを組み合わせた試験 体数は4体,縮尺は約1/3とした。周辺フレームは共通で ,柱はせん断破壊型とし,上下の加力梁には十分な強度と 剛性を持たせた。両そで壁は、PCa ブロック相互をエポキ

シ系樹脂で接着して組積し、溝内部の壁筋と充填グラウト により一体化する PCa 壁とした。PCa 壁の周囲には, 壁筋 と定着させる接合筋を溶接した鋼製枠(以下ガイドスチー ル)を配し、周辺フレームへ樹脂で接着した。スパン中央 部は, FRP ブロック相互をエポキシ樹脂で接着して組積す る FRP 壁とした。FRP 壁の周囲にもガイドスチールを配 したが, FRP 壁上部では,周辺フレームに接着するカット Tと, FRP 壁に接着するアングル材で構成し, アングル材

Properties of Specimens							
	試験体		H1	H2	H3	H2b	
周辺	柱諸元		b×D×h=220×220×900(mm) 主筋12-D13(pg=3.15%) 帯筋D6@100(pw=0.29%)				
クレーム	軸力N		N/bD=3.0N/mm ²				
	ブロック組積数		1列×6段×2層	2列×6段×2層	3列×6段×2層	2列×6段×1層	
	FRP 壁を開口とみなした 等価開口周比 <i>n</i>		$\eta = 0.34$ ($\gamma = 1 - \eta = 0.66$)	$\eta = 0.48$ ($\gamma = 0.52$)	η =0.59 (γ =0.41)	$\eta = 0.48$ ($\gamma = 0.52$)	
FRP壁		上部	CT100×80×8×12+2L100×36×7 M16(F10T)@120				
	ガイドスチール	PCa間	PL4.5×80 (PCa壁側接合筋付き)			PL4.5×70	
		下部	PL4.5×80		PL4.5×40		
PCa壁	ブロック組積数		そで壁 4列×11段	そで壁 3列×11段	そで壁 2列×11段	そで壁 3列×11段	
	壁配筋		D6シングル縦@120×横@72 (pw=0.38%)				
	ガイドスチール		PL4.5×70 接合筋D6 定着長さ30d付き				

Table 1 試験体概要

Table 2 コンクリート強度							
Concrete Strength 単位:N/mm ²							
コンクリート $\sigma_B \sigma_t Ec$ (×10 ⁴)							
	柱·加力梁	23.7	1.81	1.95			
H1,H2,H3	壁ブロック	87.2		3.04			
	壁グラウト	89.1		3.11			
	柱·加力梁	25.0	2.42	1.92			
H2b	壁ブロック	80.7	3.90	2.97			
	壁グラウト	86.1	5.56	3.05			

Table 3 鋼材強度								
Steel Strength 単位:N/mm ²								
鋼材 $\sigma_v \sigma_u Es(\times 10^5)$ 伸び								
H1,H2,H3	D13	368	575	1.90	23.4			
H2b	D13	353	520	1.86	20.1			
H1,H2	D6(帯筋)	371	472	1.95	14.6			
H3,H2b	D6(壁筋)	292	379	2.00	20.9			
H1,H2,H3	PL4.5	278	390	2.07	26.8			
H2b	PL4.5	322	418	2.10	36.4			

加力梁

ガイドスチール CT100×80×8×12 _{1カ辺} <u>+ 2L100×36</u>

6

目地接着

樹脂層

Table 4	接着強度	
Adhesiya	Strongth	13

辞館D6シングル

縦@120×横@72

	Adhesi	単位:N	J/mm ²			
	接着剤	樹脂	引張せ	ん断強度		
		FRP接	着時	鋼材接着時		
	試験方法 JIS K6850	7.98 9.84 9.7 10.47	平均 9.00	13.53 13.14 12.39	平均 13.02	
		7.03				

FRPブロック

1or3列×6段

PCaブロック

3**1**81

2列×11段

でカット T を挟み込み高力ボルトで接合した。PCa 壁と FRP 壁の境界部は、PCa 壁に接合筋で定着されたガイドス チールに FRP ブロックを接着した。試験体の製作は、実 施工で想定する工程に従い、中央の FRP 壁を組積し上部 ガイドスチールで隙間を固定した後、両そで壁の PCa 壁 を組積し、溝内部へグラウトを充填して行った。

2.2 載荷方法

載荷は,層間変形角 R(=載荷高さの水平変位/載荷高 さ)の目標所定値(±1.0, 2.0, 4.0, 6.67, 13.3×10³rad.)で各2 回の正負交番繰返し載荷とし,最後は正方向に R=30× 10⁻³rad.まで単調に加力した。鉛直軸力は,柱頂部に一定 載荷した。

Photo 2 最終破壊状況 Failure State of Specimens

実験結果および考察

3.1 破壊性状および荷重-変形関係

荷重-変形関係を Fig. 2 に,最終破壊状況を Photo 2 に,実験により得られた各種耐力を Table 6 に示す。破壊 状況は,FRP 壁厚さが 2 層の試験体 H1,H2,H3 と,1 層 の試験体 H2b に大別される。

(1) 試験体 H1, H2, H3 初ひび割れは, ガイドスチ ールグラウト側界面の剥離ひび割れもしくはPCa壁せん 断ひび割れが、R=0.72~0.9×10⁻³rad.で生じた。ガイドス チール躯体側接着面のひび割れは、R=1.4~4.0×10⁻³rad. で断続的に生じた。最大耐力は概ね R=6.67×10⁻³rad.で生 じ,以降はガイドスチール躯体側接着面のひび割れの目 開きやずれによって変形が進んだ。R=13.3×10⁻³rad.加力 サイクルでは,引張側柱頭付近のパンチングシア破壊と, PCa 壁上隅部の圧壊, 複合壁上部の接着接合面のずれが 顕著に進行し、耐力が低下した。最終破壊時においても PCa-FRP 壁間の境界接着接合面にひび割れは発生せず, 両者の一体性は保たれた。これらの試験体の破壊モード は, 複合壁上部の接着接合面のせん断すべり破壊と引張 側柱頭パンチングシア破壊による「接合面破壊」であり, 既無開口試験体1)で生じた破壊モードと同様である。

(2) 試験体 H2b 初ひび割れのガイドスチールグ
 ラウト側界面の剥離ひび割れや壁せん断ひび割れの発生
 は他の3体と同様だが、PCa-FRP壁間の境界接着接合

面全長におよぶひび割れが R=-1.8×10⁻³rad.,Q=-433kN で 発生し, PCa 壁と FRP 壁間にずれが生じた。以降このず れの影響で,それぞれが分離して変形するようになった が,せん断耐力は上昇し, R=13.3×10⁻³rad.加力サイクル の最大耐力 Q=789kN で FRP 壁にせん断破壊が生じて耐 力が低下した。この試験体の破壊モードは,PCa 壁と FRP 壁が分離してせん断破壊する「分離型破壊」とする。

(3) 実験変数による比較 実験因子ごとの荷重-変形関係包絡線の比較を Fig. 3 に示す。FRP 壁面積の相 違は、R=4.0×10³rad.までの耐力と剛性には影響したが、 接着面でのずれからパンチングシア破壊が進行する R=6.67×10³rad.以降の履歴への影響は小さい。一方 FRP 壁厚の相違は、境界接着接合面のひび割れにより R=2.0 ×10³rad 付近で H2b が一旦下回るものの、パンチングシ ア破壊の有無の相違から、終局時には H2 を上回った。

3.2 初期剛性

複合壁の初期剛性実験値 Ke を, FRP 壁を開口とみな した等価開口周比 nと, 無開口時の初期剛性計算値 Kco で無次元化した Ke/Kco との関係で Fig. 4 に示す。同図中 には,有開口壁の既往の算定手法³⁾による算定値,およ び既実験^{1)~2)}の無開口・有開口壁実験値も合わせて示す。 図より複合壁の初期剛性は,FRP 壁を開口とみなしてそ の剛性を無視した既往の算定手法でも概ね評価できた。

Table 6 実験結果

			Test Results		単位:kN	
	試験体名	H1	H2	H3	H2b	
	1/1000 (R=0.001)	430	414	392	359	
	1/500 (R=0.002)	484	487	441	505	
部材角	1/250 (R=0.004)	696	587	549	564	
	1/150 (R=0.0067)	709	680	681	700	
	1/75 (R=0.0133)	689	680	594	767	
最	:大耐力(部材角)	709 (0.0067)	684 (0.0125)	681 (0.0067)	789 (0.0100)	
	破壊形式	接合面破壊	接合面破壊	接合面破壊	分離型破壊	
	目視初ひび割れ(部位)	360 (ガイドスチールグラウト界面)	380 (壁せん断)	391 (壁せん断)	160 (ガイドスチールグラウト界面)	
	が小びたい躯体側	486 (BCa, EBB > 0.0014)	487 (PCa・FRP上,0.002)	441(PCa上,0.0019)	-335 (柱際・PCa下,-0.001)	
		480 (PCa+FRP ,0.0014)	538(柱際,0.003)	534(PCa·FRP下,0.0037)	386 (FRP下,0.002)	
てんてド生ましわ) [月 [194] [19] [19] [19] [19] [19] [19]	696 (PCa・FRP上,0.0040)	586 (PCa·FRP下,0.004)	548(PCa·FRP上,0.0040)	-433 (PCa・FRP上,-0.0018)	
0.0.9140	PCa-FRP間境界接着	邓什斗子	☆牛 止- ²²	惑生斗子	-433 (-0.0018)	
	接合面(部材角)	先生です	先生です	発生せり	789 (0.0100)	
	FRP壁せん断破壊	邓什斗子	∞++++++	628 (0.010)	789 (0.010)	
	(部材角)	先生です	先生です	-028 (-0.010)	789 (0.010)	
維兹隆伏	柱主筋(部材角)	707 (0.0064)	680 (0.0067)	664 (0.0064)	622 (0.0051)	
<u></u>	帯筋(部材角)	707 (0.0064)	680 (0.0067)	654 (0.0079)	652 (0.013)	

3.3 ひび割れ耐力

3.3.1 壁せん断ひび割れ耐力

PCa 壁に生じるせん断ひび割れ耐力 wQsc は,周辺フレ ームと PCa 壁, FRP 壁が一体で挙動していると仮定し, 式(1)で求めた。

$$_{W}Q_{SC} = \frac{\tau_{SC} \cdot t_{PC} \cdot I_{W}}{Sy}$$
(1)

 $\Box \Box \mathcal{K}, \quad \tau_{sc} = \sqrt{c \sigma_t^2 + c \sigma_t} \cdot \sigma_o, \quad c \sigma_T = 0.33 \sqrt{\sigma_B}, \quad \sigma_o:$ 軸応力度=鉛直軸力/全水平断面積, Sv: 複合壁の境界接 着面よりも外側(PCa壁)の全断面図心に対する断面一次 モーメント, t_{pc}: PCa 壁厚, I_W: 断面二次モーメントで FRP 壁を含む。実験結果と式(1)による wQsc の比較を Table 7 に示す。計算値は、実験値を概ね評価できた。

3.3.2 境界接着接合面のひび割れ耐力

複合壁の加力実験では、接着面破壊(H1, H2, H3) と、分離型破壊(H2b)が観察された。2つの破壊性状の 相違は、PCa 壁と FRP 壁の境界接着接合面に生じたひび 割れの有無によると考えられる。そこで境界接着接合面 のひび割れ耐力 Q_{BJ} を式(2)で求めた。

$$Q_{BJ} = \frac{\tau_{BJ} \cdot t_{BJ} \cdot I_{W}}{Sy}$$
(2)

ここに, *τ_{Bj}*:樹脂の引張せん断強度で,接着樹脂の FRP ブロックおよび鋼材に対する引張せん断強度を期待でき ると考え, Table 4 の最小値から τ_{BJ} =7.03 N/mm²とする。 t_{BJ}: 境界接着面の幅で min(PCa 壁厚, FRP 壁厚)。実験結 果と式(2)による Q_{BJ}の比較を Table 8 に示す。計算値は, ひび割れ発生の有無を含めて実験結果を概ね評価できた。

3.4 最大耐力の評価

3.1 節に示した2つの破壊モードの他に,複合壁が一体 のまません断破壊する一体型破壊を想定し, Fig. 5 に示 す3つの破壊メカニズムに応じた終局せん断耐力式を提 案し、実験結果との対応を検討した。

Table 7 壁せん断ひび割れ耐力

3.4.1 接合面破壊

接合面破壊による終局せん断耐力。Osuは、周辺フレー ムとの水平接着接合面の終局耐力に、引張側柱のパンチ ングシア耐力および圧縮側柱のせん断耐力を累加して, 式(3)で求めた¹⁾。

$${}_{a}Q_{SU} = Q_{iu1} + {}_{p}Q_{C} + \alpha Q_{C}$$

$$\tag{3}$$

ここに、Q_{iul}:水平接着接合面の終局せん断耐力平均式²⁾ $Q_{ju1} = 0.12Fc_1(A_{PC} + A_F)$, Fc_I : 周辺フレームの圧縮強度, Fc2: PCa ブロックとグラウト圧縮強度の小さい方, Apc, A_F: PCa 壁, FRP 壁の水平接着断面積, pQc: 引張側柱頭部 パンチングシア耐力平均式⁴⁾ $_{n}Q_{c} = k_{av} \cdot \tau_{o} \cdot b \cdot D$, a: 変形状況を考慮した低減係数, Qc: 圧縮側柱の終局強度 でせん断強度は荒川平均式、曲げ強度は耐震改修指針に よる 4)。

3.4.2 分離型破壊

分離型破壊による終局せん断耐力 CWQSUは, FRP 壁と は分離した PCa そで壁のせん断耐力と, FRP 壁のみのせ ん断耐力と、両側の柱せん断耐力を累加して式(4)で求め た¹⁾。

$${}_{CW}Q_{SU} = Q_T + Q_B + \alpha_1 Q_{C1} + \alpha_2 Q_{C2}$$
(4)

ここに、 Q_T : PCa そで壁が負担するせん断耐力 Q_T=min(Q_{T1}, Q_{T2}, Q_{T3}), Q_{T1}: 斜材の圧縮耐力に基づくせ ん断耐力, $Q_{TI}=2 \alpha_B \cdot t^2 \cdot fc(L_1/L_2) \leq 2(N+ag \cdot \sigma v)(L_1/H)$, α_B: 圧縮斜材置換時の斜材の有効幅 α_B=2.0, Q_{T2}: そで 壁上下端接合部の摩擦耐力 Q_{T2}=lc ·tpc ·fc', lc =0.3(L₁-Dc /2), Q_{T3} : そで壁のせん断耐力 $Q_{T3}=\sum A_{PC}(fs+0.5Psh \cdot \sigma)$ sy), N: 柱の長期軸力, ag・oy: 柱主筋の断面積と降伏 点強度の積, H: 階高, L_l: 柱芯からそで壁端部までの長 さ, L₂:L₁, Hを一辺とする直角三角形の斜辺の長さ, fc=0.85Fc2, fc'=0.85Fc1, Psh·σsv: そで壁の壁筋比と横 筋降伏点強度の積, fs: PCa 壁の許容せん断強度=Fc2/20。 Q_B : FRP 壁のせん断強度 ¹⁾ $Q_B = \tau_F \cdot A_F$, τ_F : 破壊モード 形成時の FRP ブロックのせん断強度で $\tau_F=3.7$ N/mm²,

Table 8 境界接着接合面のひび割れ耐力

Strength of Adhesive Joint Crack 単位:kN							
	H1	H1 H2 H3 H2b					
安殿店				Q=505kN経験後			
夫釈他 (部社名)	発生せず	発生せず	発生せず	負側Q=-433kN			
(部将用)				(-0.0018)			
計算值Q _{BJ}	734	749	771	428			
実/計	いずれも	実験最大耐	1.01				

(2) 分離型破壊

Fig.5 破壊モード Failure Mode

-0

ずれが生じる。

Test and Calculation Results						
			H1	H2	H3	H2b
	PCa壁とFRP壁の境界接着部	ひび割れ	—	-	—	-433
	最大耐力		709	684	681	789
	破壊形式		接合面破壞	接合面破壊	接合面破壞	分離型破壊
境界接着面ひび割れ耐力	$Q_{BJ} = \tau_{BJ} \cdot t_{BJ} \cdot Iw / Sy$	式(2)	734	749	771	428
		(実/計)	(-)	(-)	(-)	(1.01)
(1)接合面破壊 $_aQ_{SU}=min(Q)$	$_{ju}, \Delta Q_{WU}) + _{p}Q_{C} + \alpha Q_{C}$	式(3)	708 —	715	722	677
		(実/計)	(1.00)	(0.96)	(0.94)	(1.16)
(2)分離型破壊 $_{CW}Q_{SU}=Q_T$	$+Q_B + \alpha_1 Q_{C1} + \alpha_2 Q_{C2}$	式(4)	775	744	713	697 —
		(実/計)	(0.91)	(0.92)	(0.95)	(1.13)
(3)一体型破壊 $_WQ_{SU} = _WQ_{SU}$	$U_I + Q_B$	式(5)	746	652 -	596 -	568
		(実/計)	(0.95)	(1.05)	(1.14)	(1.39)
$min(_a Q_{SU}, _W Q_{SU}) < Q_{BJ}$	$\mathcal{B}_{W}Q_{SU0} = min(_{a}Q_{SU}, _{W}Q_{SU})$	式(6)	708 🚽	652 🗸	596 🗸	697 🗸
$min(_{a}Q_{SU}, _{W}Q_{SU}) \geq Q_{BJ}$	$\beta_{W}Q_{SU0} = _{CW}Q_{SU}$	(実/計)	(1.00)	(1.05)	(1.14)	(1.13)

Table 9 実験結果と計算値の比較

QCI, QC2: 圧縮側柱,引張側柱の終局強度。

3.4.3 一体型破壊

本実験では得られなかったが、分離型破壊に至らなかった場合、複合壁が一体のまません断破壊する場合も想定され、これを一体型破壊とし、有開口 PCa 壁として求められるせん断耐力に、FRP 壁のせん断耐力寄与分を累加して、式(5)で求めた。

$${}_{w}Q_{SU} = {}_{w}Q_{SU1} + Q_{B}$$
(5)
ここに、 ${}_{w}Q_{SU1}$:有開口 PCa 壁のせん断耐力で、

$${}_{W}\mathcal{Q}_{SU1} = \gamma \left\{ \frac{0.068Pte^{0.2s}(18+Fc)}{\sqrt{M/Qd} + 0.12} + 0.85\sqrt{Pse \cdot \sigma sy} + 0.1\sigma o \right\} be \cdot je$$

 γ : 耐力低減率 $\gamma = 1 - \eta$, *Fc*: 柱と PCa 壁の平均圧縮強 度 *Fc* = *Fc*₁·*A_c*/ ΣA + *Fc*₂·*A_{pc}*/ ΣA , *A_C A_{PC}*: 柱,PCa 壁の水 平断面積, $\Sigma A:A_{PC}+A_{Co}$

以上の式(3)~(5)と式(2)を合わせて,複合壁の破壊モードを,境界接着接合面にひび割れの発生する場合は分離型破壊による耐力,ひび割れが発生しない場合は,接合面破壊と一体型破壊の何れか小さな方の耐力と考えて,終局せん断耐力 $_{W}Q_{SU0}$ を式(6)で求める。

$$\begin{cases} \min(_{a}Q_{SU}, _{W}Q_{SU}) \leq Q_{BJ} \not z \Leftrightarrow _{W}Q_{SU0} = \min(_{a}Q_{SU}, _{W}Q_{SU}) \\ \min(_{a}Q_{SU}, _{W}Q_{SU}) \geq Q_{BJ} \not z \Leftrightarrow _{W}Q_{SU0} = _{CW}Q_{SU} \end{cases}$$
(6)

実験値と式(6)による計算値 $_wQ_{SU0}$ の比較を Table 9 お よび Fig. 6 に示す。分離型破壊に至るかどうかの判定は、 式(6)で評価できるものの、開口周比 $_{\eta}$ の大きな試験体 H2, H3 では min($_aQ_{SU}$, $_wQ_{SU}$)において式(5)が式(3)を下回 り、破壊モードが合わなかった。これは FRP 壁の形状や その補強効果を無視した開口低減率 $_{\gamma}$ による耐力低減が 過大に評価されるためと推定される。実験結果と同じ破 壊モードの計算値を比較すると、接合面破壊の式(3)では 実験値/計算値=0.94~1.00、分離型破壊の式(4)では実験 値/計算値=1.13 となり、実験結果を概ね評価できたが、 分離型破壊の耐力には梁強度の評価も必要である。今後、 開口部にはめ込まれた FRP 壁の補強メカニズムとその 評価手法を明確にし、一般的な開口形状への本補強工法 の適用が課題である。

4. まとめ

PCa壁とFRP壁を併用する耐震補強壁による一層壁せん断実験から次の知見を得た。

- 1) PCa壁とFRP壁の境界接着接合面のひび割れ耐力により,2つの破壊モードが生じた。
 - ・PCa 壁と FRP 壁は一体のまま,補強壁上部の接着接 合面がすべり破壊を起す場合。
 - ・境界接着接合面に生じるひび割れからずれが生じ、 PCa 壁と FRP 壁の各々がせん断破壊を起す場合。
- 破壊モードをモデル化した補強壁の構成要素の耐力 を累加することで、終局せん断耐力を評価できた。

参考文献

- 1) 増田安彦他:低振動・低騒音を達成した耐震補強工法 「3Q-Wall」の開発,大林組技術研究所報 No.68, 2004
- 増田安彦他:小型プレキャストブロックを用いた増 設耐震壁工法の開発(その5・6),日本建築学会大会学 術講演梗概集 C-2 分冊, pp.565-568, 2005
- 3) 武藤清:耐震設計シリーズ I 耐震設計法, 9.開口のあ る壁, 丸善, pp.189-198, 昭和 38 年
- 4) (財)日本建築防災協会:既存鉄筋コンクリート造建物の耐震改修指針・同解説,2001 年版