# 特集 「自然災害にそなえる」

## 制震装置の橋梁への適用性に関する検証

野村敏雄 岡野素之 松田 隆

## Study on Applicability of Energy Absorbing Device to Bridge

Toshio Nomura Motoyuki Okano Takashi Matsuda

#### Abstract

Seismic design of structures in civil engineering is changing to the capacity based method, and this has led to proposals for adoption of high-strength materials and new devices. At the same time, limitations in investment in infrastructure require reduction of construction costs. This paper describes the introduction into a continuous prestressed concrete bridge of a device that absorbs and dissipates earthquake energy. It describes the passive control design for the bridge to reduce the pier section and thus reduce construction cost. A brake-damper was used as a passive control device, and an experiment was performed to confirm its dynamic capacity under large deformation and a dynamic analysis was carried out. The following results were obtained. 1) The hysteretic capacity of the brake-damper subjected to large deformation was obtained as expected. 2) Use of the device made it possible to reduce the pier sections by 30-40%. 3) The brake-damper enabled larger cost reductions than the base-isolated device.

#### 概 要

近年,土木構造物の耐震設計は性能照査型設計法に移りつつあり,従来は一般に活用されてこなかった高強度 材料や新構造を用いた橋梁の提案が可能になってきている。また,公共事業への建設投資の縮減からコストダウ ンによる建設費の抑制が求められている。そこで,本研究では地震による振動エネルギーを吸収・消散する部材 を構造に取り入れ,地震時の損傷を制御する制震設計を橋梁に適用することにより,橋脚断面のスリム化やコス ト低減を図ることを検討した。橋梁でも適用可能な制振装置として摩擦ダンパーに着目し,大振幅を想定したダ ンパーの動的性能確認実験およびPCラーメン橋に対して動的解析を行った。検討の結果,以下のことが確認され た。1)大振幅においてもダンパーは想定した履歴性能を得ることができた。2)PCラーメン橋では橋脚断面を60~ 70%に低減することが可能であった。3) PCラーメン橋では免震装置と比較して大幅なコスト縮減が可能である。

### 1. はじめに

近年,土木構造物の耐震設計は性能照査型設計法に移 りつつあり,従来は一般に活用されてこなかった高強度 材料や新構造を用いた橋梁の提案が可能になってきてい る。また,公共事業への建設投資の縮減からコストダウ ンによる建設費の抑制が求められており,橋梁分野にお いては構造断面の縮小よる建設材料の数量低減が1つの 方策として考えられる。特に断面諸量が地震時応答によ って決定される橋梁下部工では,地震力の低減が重要な 要素となるので,従来の道路橋などでは免震設計が多く 採用されている。しかし,変位が過大となり桁遊間が大 きくなることや地盤や下部構造の影響で長周期となる橋 梁では適用が困難などの問題があった。

そこで、最近は地震による振動エネルギーを吸収・消 散する部材を構造に取り入れ、地震時の損傷を制御する 制震設計に関する研究が盛んに行われている。葛西ら<sup>1)</sup> は連続高架橋に対して制震ブレースと呼ばれる部材を桁 と橋脚間に設置し、応答低減効果を検討しており、本田 ら<sup>2)</sup> はビンガム流体を用いた制振装置を耐震補強に適 用している。また,広瀬ら<sup>3)</sup> は制震ダンパーによる応答 低減効果と構造断面の縮小化を検討している。

本研究では制震設計による建設部材のコスト低耐震 性能の向上を目標に,建築分野では適用実積のある摩擦 減衰型の制振装置<sup>4)</sup> に着目し,これを大ストローク化す ることにより, PCラーメン橋への適用性を検討した。

#### 2. 制振装置の動的性能確認実験

#### 2.1 制震装置 (ブレーキダンパー)

ブレーキダンパー(以下,BDと略記す。)は,鋼材間 にステンレス材とブレーキ材を一対として挟み込み,両 者間の滑りによる摩擦力を減衰力として利用した摩擦履 歴型ダンパーである。接合には,皿バネを介した高力ボ ルトを用い,締め付け力を常に一定に保持することによ り,安定した履歴ループを描くことが可能である。BDの 構造をFig.1に示す。

#### 2.2 動的性能確認実験

BDの動的性能を確認するため,動的加力実験を実施した。試験体に用いたBDの性能をTable 1に,試験体設置状況をPhoto 1にそれぞれ示す。加振は,正弦波加振とし,加振周期を0.2~4.0秒の間で,振幅を±10mm~±390mmの間で変化させた。正弦波の波数は,8波とし,目標変位に向かって徐々に振幅を増大し,4波目と5波目に目標変位に達し,その後,徐々に振幅を減少させた。

#### 2.3 実験結果

Fig. 2に周期2秒の場合における荷重~変位の履歴ル ープを示す。履歴ループは、最大振幅100mm程度までは、 矩形形状となる。しかし、最大振幅が200mm以上では、減 衰力が変位0nm付近で小さくなる、いわゆる瓢箪型の履歴 性状を示した。この傾向は他の周期の場合も概ね同様の 傾向である。

2.3.1 摩擦係数の周期依存性 Fig. 3に摩擦係数と 周期との関係を,得られたデータから求めた近似直線と ともに示す。多少のばらつきはあるものの,周期依存 性あまりなく摩擦係数は0.3程度である。

2.3.2 摩擦係数の振幅依存性 Fig. 4に摩擦係数と 振幅との関係を,得られたデータから近似した二次曲線 とともに示す。摩擦係数は振幅とともに変化し,振幅依 存性が認められる。ただし,振幅が大きくなるのに従い 摩擦係数は減少するが,実験範囲では一定値に近づく傾 向が見られる。設計では想定する変位振幅によっては摩 擦係数を低下させることが必要と考えられる。



Fig. 1 ブレーキダンパーの構造 Basic Composition of Brake Damper

Table 1 試験体仕様 Mechanical Properties

| 減衰力   | 200kN        |
|-------|--------------|
| ストローク | $\pm 390$ mm |
| ボルト軸力 | 95.5kN       |
| ボルト本数 | 3本           |
| せん断面数 | 2面           |



Photo 1 試験体設置状況 Element Test





Fig. 3 摩擦係数と振動数の関係 Relation between Frictional Coefficient and Frequency



Fig. 4 摩擦係数と振幅の関係 Relation between Frictional Coefficient and Transformation





2.3.3摩擦係数の速度依存性 Fig. 5に摩擦係数と最 大速度との関係を,得られたデータから近似した二次曲 線とともに示す。摩擦係数は振動速度にも依存しており, 最大速度が大きくなるに従い,摩擦係数は減少する特に 高速度領域ではその傾向が顕著となる結果となっている。

## 3. PCラーメン橋への適用

#### 3.1 検討対象橋梁

制震装置が地震動を吸収することにより,下部工であ る橋脚および基礎への入力が減少し,その結果,下部工 の断面寸法および鉄筋量を低減することができると考え られる。

検討対象としたPCラーメン橋は,Fig. 6に示す3径間連 続PC箱桁橋で,原設計は,道路橋示方書・同解説V耐震設 計編に基づき,L1地震時に対し許容応力度設計法が,L2 地震時に対し保有水平耐力法が適用されている。この橋 梁の両端部である,A1およびA2橋台部と桁端部との間に 橋軸方向および橋軸直角方向に対する制震装置を取付け た場合の応答を照査し,橋脚(P1,P2)の断面および鉄筋 量を低減する試みを実施した。Fig.7に原設計での橋脚 断面配筋図を示す。ただし,上部工断面については,PC 鋼材の配置等の施工条件から断面が決定されているため, 原設計と同じ断面とした。Table 2に設計条件および使用 材料の一覧を示す。

#### 3.2 原設計断面での時刻歴応答解析

3.2.1 解析モデル 解析モデルは、上部構造および橋 脚、橋台からなる構造全体系を骨組構造にモデル化した。 Fig. 8に橋軸方向の解析モデルを示す。なお、上部工は 線形はりモデルに、橋脚は塑性ヒンジ部をM-θバネモデ ル(履歴は武田モデル)で、その他を非線形はりモデル に、地盤を橋脚下端部に集中バネとしてそれぞれモデル 化した。

また,A1,A2橋台に設置されるゴム支承は,橋軸方向 に支承ばねとして,橋軸直角方向に固定としてモデル化 した。

3.2.2 解析方法 解析は,汎用3次元動的解析プログ ラムTDAPⅢを使用した。入力地震動は,道路橋示方書・ 同解説V耐震設計編に示されるレベルⅡ地震動のタイプ IおよびタイプⅡ地震動(Ⅱ種地盤用)をそれぞれ3波用 いた。

3.2.3 解析結果 解析結果の一覧(3波平均)をTable 3 に示す。また,橋脚の橋軸方向の応答例として,タイ プII地震動の一波を入力した場合のP1橋脚下端部の塑 性ヒンジとその直上の一般部の応答履歴をFig.9に示す。 なお,図中には,道路橋示方書で規定される許容回転角 および許容曲率も併せて示す。本橋梁では,塑性ヒンジ 部直上の一般部での応答が許容値に近い応答となって いる。



|       | Design Condition                                                           |      |                                    |  |  |  |  |  |  |  |
|-------|----------------------------------------------------------------------------|------|------------------------------------|--|--|--|--|--|--|--|
|       | 上部構造                                                                       | 下部構造 |                                    |  |  |  |  |  |  |  |
| 形式    | PC3径間連続<br>ラーメン箱桁橋                                                         | 橋脚   | RC柱式橋脚<br>(充実断面)                   |  |  |  |  |  |  |  |
| 橋長(m) | 177.5                                                                      | 橋台   | 逆T式橋台                              |  |  |  |  |  |  |  |
| 支間(m) | 47.3+81.5+47.3                                                             | 基礎   | 深礎杭                                |  |  |  |  |  |  |  |
| 使用材料  | コンクリート:<br>σck=40N√mm <sup>2</sup><br>鉄筋:SD345<br>PC鋼材:<br>SWPR7B(12S12.7) | 使用材料 | コンクリート:<br>σck=40N/mm2<br>鉄筋:SD345 |  |  |  |  |  |  |  |





Fig. 8 解析モデル (橋軸方向) Analytical Model

Table 3 解析結果一覧(現設計断面)

| Analytical Results (Present Design) |       |     |       |                           |       |                               |      |          |       |  |
|-------------------------------------|-------|-----|-------|---------------------------|-------|-------------------------------|------|----------|-------|--|
|                                     | L2地震動 |     | 一般部(> | 一般部(×10 <sup>-4</sup> /m) |       | 塑性ヒンジ部(×10 <sup>-3</sup> rad) |      | 支承変形量(m) |       |  |
|                                     |       | 橋脚  | 応答曲率  | 許容曲率                      | 応答回転角 | 許容回転角                         | A1   | A2       | 許容変形量 |  |
|                                     | 5 A   | P 1 | 6.14  | 8.10                      | 1.87  | 5.09                          | 0.13 | —        | 0.275 |  |
| 橋軸古向                                | タイフI  | P 2 | 5.79  | 8.12                      | 1.66  | 5.05                          | —    | 0.13     | 0.275 |  |
| 简軸刀中                                | タイプⅡ  | P 1 | 7.25  | 8.11                      | 9.36  | 16.3                          | 0.29 | —        | 0.275 |  |
|                                     |       | P 2 | 7.23  | 8.13                      | 8.42  | 16.0                          | —    | 0.29     | 0.275 |  |
| 橋軸直角方向                              | タイプ I | P 1 | 3.65  | 5.78                      | 1.28  | 7.58                          | —    | -        | Fix   |  |
|                                     |       | P 2 | 4.06  | 5.80                      | 1.41  | 7.46                          | —    | -        | Fix   |  |
|                                     | カノープロ | P 1 | 5.54  | 5.78                      | 6.89  | 29.3                          | _    | _        | Fix   |  |
|                                     | タイプⅡ  | P 2 | 5.80  | 5.80                      | 7.72  | 28.6                          | _    | _        | Fix   |  |

#### 3.3 制震化の検討

ここでは、原設計の橋脚断面から制震装置(ブレーキ・ ダンパー)を付与することによる断面寸法の低減効果に ついて検討する。

Fig. 10にBDのモデルを示す。モデル化は,非線形バイ リニアモデルとし,降伏変位は1.0mm(一定)とし,降伏 荷重は,減衰力によって決めることとした。

最適な断面寸法とBDの減衰力は、繰返し解析により決 定した。得られた最適断面・配筋図をFig. 11に断面低減 効果の一覧をTable 4 にそれぞれ示す。検討の結果、橋 軸方向および橋軸直角方向それぞれに、減衰力が950kN、 450kNのBDを取付けることにより、原設計の断面に対して、 断面寸法および主鉄筋量を60~70%程度に低減すること ができた。照査結果(3波平均)をTable 5 に、橋脚および BDの応答例としてタイプⅡ地震動の1波を入力した場合 の橋軸方向の応答履歴をFig. 12に示す。なお、ここで決 定した最適断面で、L1地震時および張出し架設時におい て、それぞれ作用断面力が許容応力度以内であることを 確認した。

#### 3.4 免震化の検討

前節で示した制震装置による効果と比較するため,原 設計での支承条件を免震支承とした場合の断面低減効果 について検討する。



Table 4 断面低減効果 Effect of Section Decrease

|         |                           |                    | P1橋脚               |      | P 2 橋脚             |                    |      |  |
|---------|---------------------------|--------------------|--------------------|------|--------------------|--------------------|------|--|
|         |                           | 原設計                | 変更後 比率2) 原設計       |      | 変更後                | 比率                 |      |  |
| 断 面(mm) |                           | $6000 \times 4500$ | $5400 \times 3200$ | 0.64 | $6000 \times 4500$ | $5400 \times 3600$ | 0.72 |  |
| 橋軸方向    |                           | 40-D51             | 36-D51             | 0.90 | 40-D51             | 36-D51             | 0.90 |  |
| 主鉄筋量    | 橋軸直角<br>方 向 <sup>1)</sup> | 32-D51<br>30-D51   | 21-D51<br>19-D51   | 0.65 | 32-D51<br>30-D51   | 24-D51<br>22-D51   | 0.74 |  |



<sup>1)</sup> 橋軸直角方向は2段配筋 <sup>2)</sup> 比率は,原設計に対する変更後の断面積比を示す。

| Analytical Results (Energy Absorbing Device) |       |     |       |                       |        |                          |          |       |              |  |
|----------------------------------------------|-------|-----|-------|-----------------------|--------|--------------------------|----------|-------|--------------|--|
|                                              | L 2   | 橋脚  | 一般部(> | ×10 <sup>-4</sup> /m) | 塑性ヒンジ音 | ∜(×10 <sup>-3</sup> rad) | 支承変形量(m) |       |              |  |
|                                              | 地 震 動 |     | 応答曲率  | 許容曲率                  | 応答回転角  | 許容回転角                    | A1       | A2    | 許 容<br>変 形 量 |  |
|                                              | タイプI  | P 1 | 7.14  | 11.5                  | 1.42   | 3.29                     | 0.117    | _     | 0.275        |  |
| 橋軸方向                                         | 9491  | P 2 | 6.60  | 10.2                  | 1.48   | 3.28                     | _        | 0.116 | 0.275        |  |
|                                              | タイプⅡ  | P 1 | 9.96  | 11.5                  | 7.91   | 8.45                     | 0.275    | —     | 0.275        |  |
|                                              |       | P 2 | 8.70  | 10.2                  | 7.36   | 8.40                     | _        | 0.273 | 0.275        |  |
|                                              | タイプI  | P 1 | 6.03  | 6.86                  | 3.36   | 4.02                     | 0.087    | _     | 0.275        |  |
|                                              | 2421  | P 2 | 5.96  | 6.74                  | 3.12   | 4.15                     | _        | 0.134 | 0.275        |  |
| 憰蚎旦角力问                                       | タイプΠ  | P 1 | 6.83  | 6.86                  | 11.7   | 12.4                     | 0.205    | —     | 0.275        |  |
|                                              | ダイブⅡ  | P 2 | 6.72  | 6.74                  | 10.7   | 13.1                     | _        | 0.272 | 0.275        |  |

Table 5 解析結果一覧(制震橋梁断面)

制震装置による断面低減効果と同一の効果を得られる ように免震支承の大きさを決定した。この免震支承の諸 元をTable 6 に、非線形バイリニアモデルをFig. 13 に それぞれ示す。また、この場合の時刻歴応答解析による 照査結果(3波平均)をTable 7 に、橋脚および免震支承の 応答例としてタイプⅡ地震動の1波を入力した場合の橋 軸方向の応答履歴をFig. 14 に示す。

制震装置を取付けた場合と免震支承とした場合に,同 一の断面低減効果を見込むために必要な支承の大きさを 比較すると,それぞれ B600mm×W600mm×H110mm, B1500 mm×W1500mm×H174mmとなる。

免震支承の場合,Fig. 14に示すように履歴ループが平 行四辺形状となるため,エネルギー吸収効率が,ほぼ長 方形状となるBDより悪くなることから,支承の大きさが 過大となると考えられる。

制震化と免震化における概略の設置コストを試算する と、制震化の反力分散支承およびBDでは、免震化の免震 支承4基の場合と比較して、約1/6のコストで断面の低減 が可能となる。

#### 4. まとめ

橋梁の耐震性向上や建設コスト,耐震補強などの維持 管理コストの縮減を目指して,制震装置の橋梁への適用 性を検討した。

 (1) 大振幅ブレーキ・ダンパーの性能で、大規模地震時 に中規模の橋梁に必要となる最大ストローク±400mm程 度までの動的性能を確認した。



(a) 塑性ヒンジ部の応答

<sup>(</sup>b) 一般部の応答

<sup>(</sup>c) ブレーキダンパーの応答

Fig. 12 橋脚の応答(制震橋梁,加速度波形Ⅱ-Ⅱ-2) Response of Pier (Energy Absorbing Device)

| Isolation Bearings                                           |                             |                    |                    |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------|--------------------|--------------------|--|--|--|--|--|
|                                                              |                             | A1橋台側              | A 2 橋台側            |  |  |  |  |  |
|                                                              | 断面(mm)                      | $1500 \times 1500$ | $1500 \times 1500$ |  |  |  |  |  |
|                                                              | 総厚さ(mm)                     | 174                | 174                |  |  |  |  |  |
| ゴム せん断弾性係数(N/mm <sup>2</sup> ) 1.0   せん断ひずみ(%) 12.6   6 個数 4 | せん断弾性係数(N/mm <sup>2</sup> ) | 1.0                | 1.0                |  |  |  |  |  |
|                                                              | 12.6                        | 14.4               |                    |  |  |  |  |  |
| 20                                                           | 個数                          | 4                  | 4                  |  |  |  |  |  |
| 迎                                                            | 直径(mm)                      | 270                | 270                |  |  |  |  |  |
|                                                              | 最大せん断力(kN)                  | 1110               | 1270               |  |  |  |  |  |
| 降伏せん断力(kN)                                                   |                             | 690                | 790                |  |  |  |  |  |
|                                                              | 1次剛性(kN/mm)                 | 125                | 126                |  |  |  |  |  |
|                                                              | 2次剛性(kN/mm)                 | 19.3               | 19.4               |  |  |  |  |  |

Table 6 免震支承の諸元



Fig. 13 免震支承のモデル化 Model of Restoring Characteristics for Isolation Bearings

| Fable | 7    | 動的  | 勺解析約  | 吉果一    | ·覧   | (免震  | 橋梁    | 釿面)   |
|-------|------|-----|-------|--------|------|------|-------|-------|
| Anary | ztio | cal | Resul | ts(1s) | sola | tion | Beari | ings) |

|                            | 1044雪動 | 松 町  | 一般部(×10 <sup>-4</sup> /m) |       | 塑性ヒンジ部(×10 <sup>-3</sup> rad) |       | 支承変形量(m) |       |       |
|----------------------------|--------|------|---------------------------|-------|-------------------------------|-------|----------|-------|-------|
| L2   橋軸方向   タ   橋軸直角方向   タ | L2地展動  | 们时们叫 | 応答曲率                      | 許容曲率  | 応答回転角                         | 許容回転角 | A1       | A2    | 許容変形量 |
|                            | カノープ I | P 1  | 5.81                      | 11.49 | 1.18                          | 3.29  | 0.08     |       | 0.435 |
| 9471                       | 9471   | P 2  | 4.12                      | 10.24 | 0.94                          | 3.28  |          | 0.08  | 0.435 |
| 橋軸方向<br>タイ                 | カノプロ   | P 1  | 10.6                      | 11.49 | 8.21                          | 8.45  | 0.277    |       | 0.435 |
|                            | 947II  | P 2  | 9.21                      | 10.24 | 7.66                          | 8.40  |          | 0.274 | 0.435 |
|                            | カノプロ   | P 1  | 5.98                      | 6.86  | 3.31                          | 4.02  | 0.02     |       | 0.435 |
| 2471                       | 2471   | P 2  | 5.91                      | 6.74  | 3. 19                         | 4.15  | —        | 0.024 | 0.435 |
| 橋軸直角方向                     | カノプロ   | P 1  | 6.62                      | 6.86  | 11.8                          | 12.4  | 0.049    | -     | 0.435 |
|                            | タイプⅡ   | P 2  | 6.55                      | 6.74  | 10.9                          | 13.1  | _        | 0.054 | 0.435 |



本実験の範囲では,振幅100mm程度までは,想定した矩 形形状の継続時間内ではストロークが大きくなるともに, 履歴ループがやや瓢箪型となることが確認された。 (2) 制震装置のPCラーメン橋への適応性,非線形時刻歴 解析を実地し、橋梁の応答等について検討した。

解析の結果,制震設計により橋脚断面を60~70%に低 減可能であることが分かった。また,免震設計と比較し て大幅なコストダウンが可能であることがわかった。

今後,制震装置の経年劣化対策の確立や,橋梁全体モ デルを用いた振動台実験により性能を実証し,実用化を 目指す予定である。

#### 参考文献

- 1) 葛西,他:多径間連続高架橋への制震ブレースの導入効果,構造工学論文集 Vol.51A, pp. 827-838, 2005.3
- 本田,他:伊毘高架橋の耐震補強工事,本四技法, Vol. 29, No. 105, pp. 14-22, 2005.9
- 広瀬,他:制震ダンパーを用いた橋の耐震性向上と コスト縮減,土木学会第60回年次学術講演会 I -098, pp. 193-194, 2005.9
- 4) 佐野,他:高力ボルト摩擦接合滑りダンパー(ブレ ーキダンパー)の開発,大林組技術研究所報,No.62, pp.13-20,2001