特集 「自然災害にそなえる」

耐震補強工法の低強度コンクリート躯体への適用性

 増田安彦
 勝俣英雄

 木村耕三

Application of Seismic Retrofit Methods to R/C Structure Made of Low Strength Concrete

Yasuhiko Masuda Hideo Katsumata Kohzou Kimura

Abstract

The "CRS-CL" Method is one of the most common seismic retrofit methods undertaken by OBAYASHI Corporation for column members, where the applicable concrete strength is in principle over 15N/mm². However, it has been reported that concrete strengths of about 15% of R/C buildings that need seismic retrofit are less than this value. Thus, the purpose of this experimental study is to determine the structural performance of low-strength R/C columns retrofitted by the CRS-CL Method. The test results are as follows. Retrofitted R/C columns with a concrete strength of about 10N/mm² showed performances as calculated by standard formulas. Furthermore, the restriction of axial force of retrofitted columns is relaxed for such low strength concrete members.

概 要

当社の代表的耐震補強技術であるCRS-CL[®]工法(CFRPシート巻き付けによる柱耐震補強工法)は,適用範囲とし て、対象とする建物のコンクリート強度が原則15N/mm²以上であることとされている。一方、この下限値を下回 る低いコンクリート強度からなる建物は、耐震補強が必要な建物全体の約15%にも達するとの報告があるにもか かわらず、十分な技術資料が整備されていなかった。このような背景から、本報告は、CRS-CL工法を対象に、 圧縮強度が10N/mm²程度の低強度コンクリート躯体への補強効果を把握することを目的として実施した実験に ついて述べたものである。実験結果から、低強度コンクリート躯体に対してもCRS-CL工法は十分な補強効果を 発揮し、せん断耐力は普通強度コンクリートを対象に定められた計算式を用いて評価可能であった。また、低強 度コンクリートに対してCRS-CL工法を採用する場合に、軸力比制限緩和の可能性についても検討した。

1. はじめに

既存鉄筋コンクリート建物を耐震補強する際に,コン クリート強度が低く,既存技術の適用範囲(概ね圧縮強度 が13.5N/mm²以上が適用範囲)¹⁾では対応ができない場合 がある。この様な低強度コンクリートからなる建物数は, 耐震補強が必要な建物全数の約15%にも達するとの報告 ⁶⁾があるにもかかわらず,圧縮強度13.5N/mm²を下回る低 強度コンクリート躯体の耐震補強に対する技術資料は極 めて少ないのが現状である。

本論文は、このような背景から、当社の代表的耐震補 強技術で、適用範囲が原則として圧縮強度15N/mm²以上 と定めているCRS-CL工法を対象に、圧縮強度10N/mm² 程度の低強度コンクリート躯体への適用性を把握するこ とを目的として実施してきた実験結果^{7),8),9)}についてまと めたものである。

CRS-CL工法⁴⁾は、炭素繊維強化プラスチック(以下, CFRPと略記する)ストランドまたはCFRPシートを巻き 付ける柱の耐震補強工法であるが、ここでは特に、CFRP シートの巻き付け補強を対象とした。

2. 実験概要

2.1 試験体概要

Table 1 に試験体概要を示す。実験は4シリーズよりな る。すなわち,せん断柱シリーズ(LcS),極脆性柱シリー ズ(LcG),付着割裂柱シリーズ(LcB),高軸力シリーズ (LcC)である。LcSおよびLcBシリーズは,無補強の場合 の破壊性状がそれぞれせん断破壊および付着割裂破壊を 生じる柱を対象とし,LcGシリーズは耐震診断基準⁵⁰で定 義される極脆性柱を,LcCシリーズはコンクリート強度 が低強度であったために過度な軸力が柱に作用する場合 を想定し,それぞれCFRPシートの補強効果を調べること を目的としている。

各シリーズとも試験体数は3体で,主なパラメータは CPRPシート補強量とし,無補強,補強量少(ゼブラ状補 強),補強量多(2層または3層巻き補強)とした。目標と したコンクリート強度は,LcSよびLcGシリーズはFc=9 N/mm²,LcBおよびLcCシリーズはFc=10N/mm²である。 なお,Table 1 中の軸力比 η =N/bDFcには,この目標強 度を用いている。Fig.1 に試験体断面を,Fig.2 に配筋 例を,Fig.3 にCFRPシート補強の詳細例を示す。

Table 1 試験体概要

Outline of Specimens

2.2 加力方法

加力は定軸力正負交番繰り返し逆対象載荷とし,変位 制御で実施した。ただし,LcG,LcBシリーズは,まず 荷重制御でQ=±100kNを載荷した。載荷履歴はLcGシリ ーズを除き,部材角R=±1/2000(LcSシリーズは除く),R =±1/1000を1サイクル,R=±1/500,R=±1/250,R=±1/12 5,R=±1/83,R=±1/63(LcSシリーズのみ),R=±1/50,R= ±1/36,R=±1/25,R=±1/15(rad.)を各2サイクルとした。 LcGシリーズは,部材角R=±1/480を1サイクル,R=±1/ 240,R=±1/120,R=±1/72,R=±1/60,R=±1/40(rad.)を 各2サイクルとした。最大耐力の80%以下となったサイ クルの正負1回目のサイクルで水平加力を終了した。な お,本論文では,部材角R(=水平変形量/柱内のり高さ) により実験,考察の記述を統一する。

軸力比は, Table 1 に示すように, LcC シリーズを除 き, $\eta = 0.34$ と高めに設定した。高軸力のLcCシリーズは, 建物の設計強度よりもコンクリート強度が低強度であっ たことを想定して, 通常のコンクリート強度レベルにお いて CFRP シート補強が対象とする軸力比よりも高めの $\eta = 0.65$ に設定した。

Table 2 使用材料の特性 Material Properties

コンクリート								
シリーズ	LcS	LcG	LcB	LcC				
圧縮強度Fc(N/mm ²)	12.0	11.3	8.7	10.6				
ヤング係数Ec(N/mm ²)	13500	12200	16400	17600				

鉄筋

呼び名	降伏強度 σy(N/mm ²)	ヤング係数 Es(N/mm ²)	引張強度 σu(N/mm ²)	伸び(%)
D22	338	1.94×10^{5}	512	22.2
D19	320	2. 01×10^5	503	20.0
D16	318	1.85×10^{5}	477	18.6
D6	341	1.84×10^{5}	499	19.8
φ6	280	2.23×10^5	446	-

CFRPシート

	目付量	設計厚さ	規格引張強度	規格ヤング係数
	(g/m²)	(mm)	(N/mm^2)	(N/mm^2)
CFRPシート	200	0.111	3400	2.30 $\times 10^{5}$

2.3 使用材料

試験体に使用した低強度コンクリートの調合は2種類 である。LcS, LcGシリーズでは水セメント比160%で, 軽量 I 種コンクリートを, LcB, LcCシリーズでは水セメ

シリーズ	試験体	Qc	Qsc	Qy	Qsy	Qu	δu	_ 破壊 モード	Qu計1	Qu計2	Qu計3	Qu計4	実/計
	LcS00	113	218	(#203)	225	244	6.4	S	242	211	252	382	1.16
LcS	LcS03	174	270	(240)	—	278	12.0	S	268	298	260	382	1.07
	LcS11	観察不可	269	#346	_	353	12.0	F→S	321	435	285	382	0.92
	LcG00	158	242	(#-229)	(-261)	282	4.2	S	293	206	278	688	1.37
LcG	LcG03	219	295	(#323)	(-311)	343	4.2	S	327	264	284	688	1.30
	LcG17	観察不可	340	(#443)	—	477	8.3	S	415	432	314	688	1.10
	LcB00	163	159	(#186)	(185)	193	6.3	B, S	331	192	231	938	1.01
LcB	LcB03	172	174	(#185)	_	222	12.5	B, S	354	263	237	938	0.94
	LcB17	観察不可	194	(#215)	_	277	12.5	В	432	342	268	938	1.03
LcC	LcC00	178		#186	_	213	4.0	F	278	211	228	167	1.28
	LcC03	177	-	#160	(#-32.4)	222	4.0	F	303	297	236	167	1.33
	LcC17	観察不可	-	#223	(#-26.1)	285	8.0	F	384	411	274	167	1.71

Table 3 実験結果一覧

Test Results

Qc:曲げひび割れ荷重, Qsc:せん断ひび割れ荷重, Qy:主筋降伏荷重, Qsy:帯筋降伏荷重, Qu:最大耐力, δu:最大耐力時変位, 破壊モード:S(せん断),B(付着),F(曲げ),F→S(曲げ降伏後せん断),B,S(付着、せん断複合型),

吸服1:荒川Imean式(1)式,Qu計2:終局指針式(2)式,Qu計3:付着強度式(3)式,Qu計4:曲げ強度時せん断力(4)式,実/計:計算値にはCRS-LC 工法設計施工指針に応じて計算値2~計算値4のうち破壊モードに応じた計算値(複合型は小さいほう)を用いた。

単位:荷重はkN,変位はrad(×10⁻³), ()内の数字は最大耐力以後を示す。#は圧縮降伏を示す。

Fig.4 LcSシリーズの柱せん断力-水平変位関係 Shear Force - Horizontal Deformation Relationship of Specimens on LcS-Series

ント比155%の普通コンクリートとした。打設時の材料分離を防止するために前者ではフライアッシュ(II種)を, 後者は石灰石微粉末を混和材として使用した。Table 2 に使用材料の特性を示す。コンクリート強度はほぼ目標 強度が得られたが、LcS、LcGシリーズではやや高めであ った。コンクリートのヤング係数がLcS、LcGシリーズと LcB、LcCシリーズで大きく異なるが、これは前者のコン クリートの粗骨材に軽量骨材を用いたことによる。

3. 実験結果

実験結果一覧をTable 3に、シリーズごとに柱せん断力 -水平変形関係をFig.4~7に、載荷終了時の試験体写真 をPhoto.1~4に示す。

3.1 せん断柱シリーズ(LcS シリーズ)の破壊経過

LcS00, LcS03 試験体は R=1/1000 のサイクルで曲げひ び割れ, R=+1/250 のサイクルで, せん断ひび割れが発 生した。LcS00 試験体は R=-1/500 で負側最大耐力に達 し, R=+1/125 サイクル中に正側最大耐力に達した。こ の最大耐力時に試験体正面中央部のフープが降伏し, R=

LcS00LcS03LcS11Photo 1 LcSシリーズ載荷終了時試験体写真Final State of Specimens on LcS-Series

+1/125 で主筋が圧縮降伏した。LcS00 試験体は最大耐力 以降せん断ひび割れが大きく広がり,耐力低下が著しく 見られた。LcS03 試験体は R=-1/125 で負側最大耐力に 達し, R=+1/83 で正側最大耐力に達した。その後正負共

大林組技術研究所報 No.71 耐震補強工法の低強度コンクリート躯体への適用性

Fig.5 LcGシリーズの柱せん断力-水平変位関係 Shear Force - Horizontal Deformation Relationships of Specimens on LcB-Series

に緩やかに耐力は低下し, R=+1/63 サイクルで主筋が引 張降伏, R=-1/50 で圧縮降伏した。LcS03 試験体につい ても最大耐力後せん断ひび割れが進展した。両試験体共 に最大耐力時に主筋の引張降伏は観察されなかった。

LcS11試験体についてはR=±1/500の2サイクル目まで は大きな変化は見られなかったが,R=+1/250サイクル 中,鈍い音と共に水平力が一時的に低下した。この時に せん断ひび割れが生じたものと推定した。その後、R=+ 1/83サイクルで柱右面上部に,R=-1/83サイクルで柱左 面上部にCFRPシートの浮きが発生した。このサイクルで 正負共に最大耐力に達した。この後シートの浮きは進展 していき,R=+1/50サイクルで柱正面にも発生した。ま た正側最大耐力に達する直前で主筋が引張降伏し,最大 耐力時には圧縮降伏も確認された。正負載荷共にLcS03 試験体よりもさらに緩やかに耐力は低下した。なお,フ ープの降伏は観察されなかった。破壊モードはLcS00,L cS03試験体はせん断破壊,LcS11試験体は曲げ降伏後の せん断破壊と推定される。なお、いずれの試験体もCFR Pシートの破断は生じなかった。

3.2 極脆性柱シリーズ(LcGシリーズ)の破壊経過

LcG00, LcG03試験体はR=1/480サイクルで曲げひび割 れ・せん断ひび割れが発生した。LcG00試験体はその後 せん断ひび割れが大きく進展した。LcG00, LcG03試験 体共にR=1/240で最大耐力に達した。LcG00試験体はこの サイクル中の負側最大耐力時に試験体正面中央部のフー プが降伏したのち,主筋が圧縮降伏した。LcG03試験体 はR=+1/120サイクル中に主筋が圧縮降伏すると共に大 きく耐力低下し,せん断破壊を生じた。

LcG17試験体はR=+1/480サイクル中に大きな音と共 に一時的に耐力が低下した。この時にせん断ひび割れが 生じたと推定した。R=+1/72でシートの浮きが発生,そ の後シートの浮きは進展していった。

LcG17試験体はR=1/120で最大耐力に達し,その後緩や かに耐力が減少し,R=+1/72で主筋が圧縮降伏,R=+1/ 60で引張降伏した。なおフープの降伏は実験終了時まで 見られなかった。破壊モードはLcG00,LcG03試験体と 同様にせん断破壊と推定した。

LcG00LcG03LcG17Photo 2 LcGシリーズ載荷終了時試験体写真Final State of Specimens on LcG-Series

極脆性柱では、ゼブラ補強を施したLcG03試験体の最 大耐力は、無補強のLcG00試験体を上回ったが、最大耐 力以降の耐力低下を大きく改善するには至らなかった。 シート3層で補強したLcG17試験体では、最大耐力の大幅 な向上が見られ、さらに最大耐力以降の耐力低下も緩や かであった。なお、いずれの試験体もCFRPシートの破断 は生じなかった。

3.3 付着割裂柱シリーズ(LcB シリーズ)の破壊経過

LcB00 試験体は、R=1/1280 で曲げひび割れ・せん断ひ び割れが発生した。続いて R=1/320 サイクル中,主筋配 列面に沿う付着ひび割れが発生した。R=1/160 で最大耐 力に達し,荷重変形関係上スリップが生じ始めた。R=1/ 80 で主筋の圧縮降伏・フープの降伏が生じると共に,柱 頭・柱脚付近の付着ひび割れが顕著に開き,除荷時にも その開きは戻らず,以降は緩やかな耐力低下を生じた。 破壊モードは,せん断と付着の複合破壊と判定した。な お,CFRP シート破断は生じなかった。

LcB03 試験体は, R=-1/1280 で曲げひび割れ, R=1/64 0 でせん断ひび割れが発生し, R=1/320 サイクル中, 主 筋に沿う付着ひび割れが発生した。続いて R=1/160 に上 下部材端部で CFRP シートに浮きが生じた。R=1/80 で正 負共に最大耐力に達して LcB00 試験体と同様スリップが 顕著となった。以降 CFRP シートの隙間からコンクリー トが剥落し始め, R=1/53 で主筋の圧縮降伏, R=1/32 で 主筋の引張降伏が確認され緩やかに耐力低下した。本試 験体も LcB00 と同様に付着とせん断の複合破壊と判定し

Shear Force - Horizontal Deformation Relationships of Specimens on LcB and LcC-Series

た。CFRP シート破断は実験終了まで生じず,隅角部の シートの接着は実験後も維持されていた。

LcB17 試験体は, R=1/640 でせん断ひび割れが確認さ れたが,最大耐力に達する R=1/80 まで CFRP シートの浮 きも確認されず,目立った損傷は無かった。その後のサ イクルでスリップが顕著となり,主筋に沿う位置で CFR Pシートに浮きが生じ始めた。R=1/53 で主筋の圧縮降伏, R=1/32 で主筋の引張降伏が確認された後も,緩やかに耐 力が低下し,付着破壊を生じた。CFRP シート破断は生 じなかった。

3.4 高軸カシリーズ(LcCシリーズ)の破壊経過

無補強のLcC00試験体は,R=1/500で曲げひび割れが発 生し,R=1/250ピーク付近で主筋の圧縮降伏を生じて最 大耐力に達した。同時に柱頭柱脚部の圧壊が顕著になる と共に,圧縮側主筋に沿う縦ひび割れが発生した。R=1/ 83サイクルの繰り返し載荷時に圧縮主筋の座屈が生じ, 軸力保持能力が急激に低下し,極めて脆性的な破壊を示 した。

LcC03試験体は、LcC00試験体と同様の経過をたどり、 R=1/250付近で主筋の圧縮降伏が生じ、最大耐力に達した。R=1/125で主筋沿いに縦ひび割れが発生し、以降のサイクルで圧縮側CFRPシートの浮き上がり・縦ひび割れの開きが共に顕著になり、コンクリートの剥落が進行した。R=+1/50からR=-1/50にかけてフープの降伏が確認され、柱頭圧縮側CFRPシートが部分的に破断した。続いて 圧縮鉄筋の座屈により水平力・軸力共に保持限界に達した。

LcC17試験体は, R=1/500サイクルで圧縮側のCFRPシ

LcB00LcB03LcB17Photo 3 LcBシリーズ載荷終了時試験体写真Final State of Specimens on LcB-Series

Photo 4 LcCシリーズ載荷終了時試験体写真 Final State of Specimens on LcC-Series

i=(b-Σdb)/Σdb, *Σpw*':断面外周に配置されたせん断補強筋比=*pw'(s)+3pw(CF)*, *pw'(s)*:断面外周の帯筋比

Fig.7 各計算値と実験値の適合性

Comparisons of Test results and Calculated Value

ートの浮き上がりが生じ、またシート隙間からひび割れ も確認された。R=1/250ピーク付近で主筋の圧縮降伏が 発生したが、その後も耐力は上昇し、R=1/83で最大耐力 に達した。以降圧縮側のCFRPシートの浮き上がりが進展 し、R=1/50で柱中央部のCFRPシートに浮き上がりが生じ、 フープの降伏が確認された。R=1/36で圧縮主筋の座屈と 共に柱頭部のCFRPシートが爆発音を伴って大きく破断 して水平力・軸力共に保持限界に達した。

4. 低強度コンクリート柱の耐力について

Fig.7は各シリーズのせん断耐力の計算値と実験値を 横軸にCFRPの補強筋比をとって比較したものである。せ ん断,付着および曲げ耐力計算値にはTable 3中の計算値 1,2,3,および4を用いている。各計算式は図中に示す が,計算値1は荒川mean式,計算値2~計算値4はCRS-CL 工法設計施工指針に定められた,終局指針式に基づくせ ん断耐力式⁴⁾(計算値2),付着耐力式³⁾(計算値3),および曲 げ耐力略算式⁴(計算値4)である。本章では、10N/mm² 程度の低強度コンクリートを対象に耐震補強を施した 柱部材への、これらの既往の耐力式の適用性について 検討する。

4.1 せん断耐力

Fig.7によれば、せん断破壊シリーズ(LcS)および極脆 性柱シリーズ(LcG)の実験値は、計算値1(荒川mean式) と良く一致する。一方、計算値2(終局指針式)と計算値 3(付着耐力式)の小さいほうで評価すると、Table 3によ れば、LcSシリーズは安全側に比較的精度良く耐力を 推定することができるが、極脆性柱のLcGシリーズで は耐力を過小評価する傾向が見られる。またこの場合、 CFRP補強量が多い試験体の破壊モードは付着破壊と 判定されるが、実際の破壊モードと一致しない傾向が ある。これは、計算値2および3は軸力の影響を考慮し ない式であるが、実験では比較的高軸力を作用させた 点が一因と思われる。

耐震改修設計指針・同解説¹⁾では,計算値1の係数 0.068を0.053とする荒川min式を採用している。Table 4 は,荒川mean式および荒川min式による計算値と,LcS およびLcGシリーズのせん断耐力実験値に対する計算値 の比を示す。同表より,補強量が多い試験体に対する耐 力をやや低く評価する傾向があるが,荒川mean式および 荒川min式は低強度コンクリート柱の補強後のせん断耐 力を精度良く評価できると考えられる。

以上をまとめると、CFRPによる耐震補強を行った低強 度コンクリート柱のせん断耐力は、本実験で用いた程度 のシアスパン(h₀/D=1.5)程度の極脆性柱含め、荒川min式、 荒川mean式あるいは終局強度式と付着耐力式の組み合 わせで求める評価方法で、比較的精度良く評価できる。 ただし、極脆性柱に対しては、後者の評価式は耐力を過 小評価する傾向がある。

4.2 付着耐力

Table 3 および Fig.7 によると, 付着破壊シリーズ(LcB) の最大耐力は、計算値2と計算値3の小さいほうで評価 する耐力計算値と精度良く一致しているが、ここでは主 筋の付着応力に関しても把握しておく必要がある。Tabl e5は、LcBシリーズの各試験体における隅角部主筋と 中間筋を対象として、ひずみ計測により求めた付着強度 と付着割裂強度計算値を比較したものである。各試験体 主筋の歪度は、柱頭柱脚のほかスパン内3点の計5点で 計測したが, 柱頭柱脚部を除き, 安定して歪の計測がで きた3点, すなわち2区間(ho=800の内, 中央の480mm の区間)の平均付着応力度を計算値との比較の対象とし た。なお、実験値は、最大耐力を発揮した時の正側・負 側の平均値を示している。計算値は Fig.7 中の記号の説 明に示した付着割裂強度式による。同表によれば、いず れの試験体においても,最大耐力時平均付着応力度と付 着割裂強度計算値は良く一致している。

一方、付着割裂破壊を生じる部材へも比較的適合性が

Table 4 荒川式の適合性 Estimated Shear Forces by Arakawa-Formula

シリーズ	試験体	Qu	Qu計 (荒川mean)	Qu計 (荒川min)	実/計mean	実/計min
	LcS00	244	242	222	1.01	1.10
LcS	LcS03	278	268	247	1.04	1.13
	LcS11	353	321	300	1.10	1.18
	LcG00	282	293	256	0.96	1.10
LcG	LcG03	343	327	289	1.05	1.19
	LcG17	477	415	376	1.15	1.27

Table 5 主筋付着応力度

Bond Stress of Main Bars

試験体	実験値			計算値	実/計	
	in $ au$ bu	out $ au$ bu	ave $ au$ bu	au bu	ave $ au$ bu/ $ au$ bu	
LcB00	1.14	1.66	1.29	1.23	1.05	
LcB03	1.18	1.78	1.35	1.29	1.05	
LcB17	1.30	2.33	1.60	1.59	1.01	
inτbu,outτbu:それぞれ中間主筋、隅角部主筋の最大耐力時						

in τ bu, out τ bu : それぞれ甲間王筋,隅角部王筋の最大I 付着応力度(N/mm²)

222

285

ave τ bu: 一列に配された主筋の最大耐力時平均付着応力度(N/mm²)

Table 6 断面解析結果

Fiber Model Analysis								
試験体	実験値 Qmu	計算値4 (Table3)	解析値 Qmu(fib)	実/解析				
LcC00	213		198	1.08				

167

214

263

1.04

1.08

良いとされる計算値 1(荒川 mean 式)は、LcB シリーズの 試験体に対しては、補強の有無や補強量に関わらず、耐 力を過大評価する結果となった。

4.3 曲げ耐力

LcC03

LcC17

Table 3の計算値4はCFRP補強による拘束効果を考慮 していないため、高軸力を受ける曲げ破壊シリーズLcC の実験値をかなり低く評価している。これは通常の強度 レベルのコンクリートに対しても同様な傾向があると言 えるとともに、曲げ耐力は通常の強度においてはかなり 精度良く算定することが可能である。そこで、低強度コ ンクリートに対しても同様の手法が適用できるかどうか 確認しておく必要がある。

Table 6は拘束効果を考慮したコンクリートの $\sigma - \epsilon$ 関係を用いたファイバーモデルによる断面解析の結果と, LcCシリーズの実験値を比較したものである。解析にお いては平面保持を仮定し、コンクリートの構成則には青 山らのモデル¹⁰⁾を使用した。また、無補強のLcC00試験 体では帯筋による拘束効果を考慮し、中塚らの提案¹¹⁾ に従い、最大耐力、最大耐力時歪、応力降下勾配、終局 歪をカバーコンクリート、コアコンクリートについて設 定した。ゼブラ補強を施したLcC03試験体およびシート 三層による補強を施したLcC17試験体ではCFRPシート による横拘束効果を考慮し、中出らの提案¹²⁾に従い、最 大耐力、最大耐力時歪、応力降下勾配、終局歪をカバー コンクリートについて設定し、更にコアコンクリートに ついても帯筋による拘束効果をLcC00試験体と同様に設 定した。同表によると、実験値と解析値の比(実/解析) は、補強の有無、補強量に関わらず、1.04~1.09と比較的 よく対応した。ただし、解析結果に比べ、実験では、補 強量が多いほど主筋応力がスパン全長にわたって圧縮応 力が大きくなる傾向が見られた⁹。

5 軸力比制限の緩和

柱の曲げせん断実験では、高軸力を受ける柱に対して、 CFRP補強を施すことで、部材の耐力や変形能力を向上さ せることが可能であることが確認された。Fig.8にLcCシ リーズの軸力比と鉛直ひずみ関係を一例として示す。

一方,耐震改修設計指針・同解説¹⁾においては,CFRP 補強に軸力比制限の緩和を認めていない。そこで,CFRP 補強における軸力比緩和の可能性について,CFRP補強を 施したプリズム試験体を用いて検討する。

5.1 実験の概要および結果

試験体一覧と実験結果をTable 7に,プリズム試験体の 形状及びCFRP補強をFig.9に,圧縮応力一鉛直ひずみ関 係をFig.10に示す。実験は,CRS-CL工法の適用範囲であ る普通強度2種と,適用範囲を下回る低強度2種で実施し た。低強度試験体のコンクリートは,柱試験体のLcS, LcGシリーズに用いたものと同調合の軽量コンクリート を使用している。載荷は圧縮試験機による単調載荷とし た。

Fig.10より,普通強度1(Fc=34N/mm²)は,補強量を増加 しても最大圧縮応力度に顕著な差は見られなかった。し かし,最大応力後の応力下降勾配は補強量の増大に従っ て緩やかとなった。普通強度2(Fc=17.5N/mm²)においても, 普通強度1と同様,補強量を増加しても最大圧縮応力度に 顕著な差は見られなかったが,最大応力後の応力下降勾 配は補強量の増大に従って緩やかとなった。

一方,低強度1,2(平均Fc=10.1N/mm²)では,補強量の増 大に従い,歪が約0.2%で最大応力に達し,その後応力度 が下降するタイプから,0.2%以降も応力が上昇するタイ プに移行した。上昇タイプのものはCFRPの破断直前点が 最大圧縮応力度となった。

5.2 プリズム試験体の補強による釣合い軸力比の推移

軸力比-炭素繊維補強量関係をFig.11に示す。ここで言う軸力比は、以下の定義のもと算出されたものである。 [定義1] 耐震改修設計指針・同解説¹⁾より、無補強試験 体の釣合い軸力比 η を0.4とする。

[定義2]最大応力度は、圧縮応力-鉛直歪関係上において 鉛直歪の制限を設けず、下降タイプ・上昇タイプを問わ ず常に最大となった点とする。すなわち、Fig.11中に示 した補強後釣合い軸力比は、安全限界であり使用限界で はない。

Fig.11中の縦軸の補強後釣合い軸力比ηは、補強前の コンクリート強度をFc,補強後のコンクリート強度をFc'

F1g.0 轴刀比一如直0.9 外医你的一例

Fig.9 プリズム試験体 Prism Specimens

Table 7 試験体および結果 Specimens and Test Results

	-			
シリーズ	タイプ	CFRPによる 体積補強筋比 ρCF(%)	コンクリート 圧縮強度 (N/mm ²)	強度上昇率 α
	00	0.00	33.9	1.00
	10	0.10	33.7	0.99
普通強度1	20	0.20	33.4	0.99
	30	0.30	32.6	0.96
	40	0.40	35.7	1.05
-	00	0.00	17.5	1.00
	10	0.10	17.5	1.00
普通強度2	20	0.20	20.4	1.17
	30	0.30	20.2	1.16
	40	0.40	25.1	1.43
	00	0.00	10.8	1.00
	10	0.10	10.4	0.96
低強度1	20	0.20	12.2	1.13
	30	0.30	14.9	1.36
	40	0.40	16.0	1.66
	00	0.00	9.5	1.00
	10	0.10	9.1	1.04
低強度2	20	0.20	11.0	1.16
	30	0.30	14.0	1.48
	40	0.40	15.6	1.64

とした時に次式で算出した値を示す。

 $\eta = 0.4 \times \text{Fc'/Fc} \tag{7}$

また, 横軸は体積横補強筋比pwr×有効強度 σ нを示す。 なお, 図はコンクリート強度ごとに示したが, 低強度で ある低強度1,低強度2シリーズはほぼ同強度であるので, 低強度シリーズとしてまとめて示した。

傾向として,各シリーズともpwf・σfal=1.61(N/mm²)(pwf =0.1%)では補強コンクリートの強度は顕著な増大はみ られなかった。しかし,pwf・σfal>3.0(N/mm²)の補強量で はコンクリート強度により差はあるものの,補強コンク リートの強度の増大がみられ,特に低強度のものには顕 著な強度の増大がみられた。強度の増大が生じる範囲を データの分布状況からpwf・σfal>2.0(N/mm²)として,最小 二乗法により求めた近似直線を図中に示す。

5.3 軸力比制限緩和式の提案

実験の結果から、以下の式を提案する。

コンクリート強度がFc=10N/mm²程度であるとき、CF RPシート補強後の軸力比は以下の式で

5.4 提案式の適合性の検証

提案式の適合性を,前報のLcCシリーズを用いて検証 する。

LcC03(ゼブラ巻き)試験体およびLcC17(3層巻き)試験 体について計算すると以下の結果を得る。

LcC03(ゼブラ) $p_{wf} = 0.000555, \sigma_{fd} = 1610 (N / mm^2)$ $p_{wf} \sigma_{fd} = 0.894 < 2$ より、 $\eta = 0.4$ LcC17(3 層) $p_{wf} = 0.003268, \sigma_{fd} = 1610 (N / mm^2)$ $p_{wf} \sigma_{fd} = 5.26 (N / mm^2)$ $\eta = 5.26 / 18 + 0.289 = 0.58$

この計算結果とFig.8の実験結果を比較すると、LcC03 試験体は、試験時軸力比 η =0.65下で、最大耐力時及び復 元力が耐力の80%以下に低下したときの層間変形角は無

補強試験体と同じであった。また、LcC17試験体は,試験 時軸力比 η =0.65と計算値より厳しい軸力レベル下にお いても、靭性指標F値=3.2に相当するR=1/25(rad.)で復元 力が耐力の80%以下に低下した。以上より、LcC03試験 体程度の補強量(pwr・ σ ra=0.894)では軸力比の緩和は見込 めず、LcC17試験体程度の補強(pwr・ σ ra=5.26)を施せば、 軸力比制限を0.58に緩和できるという本提案式による計 算結果は、概ね実験結果に対応していることが分かる。

6. まとめ

低強度コンクリートを使用したRC柱試験体12体に対 する静的加力実験を行い,CFRP補強の耐震補強効果につ いて検討した結果,以下のような知見を得た。

- せん断柱・極脆性柱・付着破壊柱・高軸力柱のいず れにおいても圧縮強度 Fc=9~12N/mm²の低強度の 領域において、CFRP シート補強により各種耐力の 向上、および変形性能の向上を図ることが可能であ った。
- 2) Fc=11~12N/mm²程度の低強度コンクリートを使用したせん断柱・極脆性柱ともに、補強の有無に係わらず、既往の計算式^{1)~4)}でせん断耐力の評価は可能であった。ただし、極脆性柱に対して、終局強度式と付着耐力式の組み合わせで求める評価方法は、耐力を過小評価する傾向がある。
- 3) Fc=9N/mm² 程度の付着破壊試験体の主筋付着強度および最大耐力実験値は、補強の有無に係わらず、学会指針案³⁾に基づく付着強度、および付着断耐力式を用いて求めた計算値とよく一致した。
- 4) Fc=10N/mm²程度の低強度コンクリートを使用した高軸力下での曲げ破壊柱において、CFRP シート補強により曲げ耐力と変形能力の向上を図ることが可能である。その曲げ耐力は略算式⁴⁾によると過小に評価されるが、ファイバーモデルのよる断面解析による解析値とは良く一致した。

高軸力の実験結果を踏まえ、CFRPシート補強における 軸力比緩和の可能性について、CFRPシート補強を施した プリズム試験体を用いて検討した結果,以下のような知 見を得た。

- 5) Fc=10N/mm²程度の RC 柱部材に,ある程度の炭素 繊維シート補強(pwf・o fd で 2.0(N/mm²)程度以上)を 施すことで,CFRP シート補強に対しても軸力比制 限を緩和することが可能と考えられる。
- 6) 軸力比制限緩和式を提案した。また,提案式による 計算値と高軸力柱実験の結果の適合性を検証した結 果,良好な対応が得られた。

謝辞

CRS-CL工法に関する実験研究は,国立大学法人 横浜 国立大学大学院 工学研究院 田才研究室との共同研究に よるものである。本研究開発に関して多大なご助力と貴 重なご意見を頂いた田才 晃 教授をはじめ,田才研究室 の皆様,卒業生に深謝致します。

参考文献

- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震改修設計指針・同解説, pp.148-170,2001
- 2) 日本建築学会:鉄筋コンクリート造建物の終局強度 型耐震設計指針・同解説, pp.135-141
- 日本建築学会:連続繊維補強コンクリート系構造設 計施工指針案, pp.292-294
- 4) 村橋久広 他編著:連続繊維による補修・補強,理工 図書, pp.141-155
- 5) 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・同解説, pp.5-18,2001
- 6) 坂巻健太 他:既存鉄筋コンクリート造建築物のコンクリート強度に関する研究(その 1)設計基準強度の変遷および圧縮強度の分布,日本建築学会大会梗概集, C-2,pp80-802,2001
- 水野 生 他:低強度コンクリートRC柱に対する炭素繊維シート補強による補強効果, Vol.28,No.2,pp1153-1158,2006
- 8) 雨宮牧子 他:付着割裂破壊を伴う低強度コンクリ ート RC 柱の炭素繊維シートによる補強効果に関す る実験的研究,コンクリート工学年次論文集, Vol.29,No.3,pp1129-1134,2007
- 9) 帆足勇磨 他:高軸力下における低強度コンクリートRC柱の炭素繊維シートによる補強効果に関する実験的研究,コンクリート工学年次論文集, Vol.29,No.3,pp1231-1236,2007
- 10) 藤井俊二 他:材料特性により求めた鉄筋コンクリ ート断面のモーメント - 曲率関係,日本建築学会大 会学術講演梗概集,pp1261 - 1262, 1973, 10
- 鈴木計夫 他:角型横補強筋によるコンファインド コンクリートの拘束機構と強度・変形特性,コンク リート工学年次論文報告集 11 - 2, 1989, pp449 - 454
- 12) 中出陸 他:炭素繊維シートによるコンクリート柱の拘束効果に関する実験的研究,コンクリート工学年次論文集 Vol.23, No.1, 2001, pp859 864