特集 「品質の向上をめざして」

二重折板屋根の熱伸縮に対する疲労損傷評価

浅井英克 時野谷浩良

Fatigue Damage Evaluation on Thermal Expansion of Folded Plate Roof

Hidekatsu Asai Hiroyoshi Tokinoya

Abstract

Folded plate roofs are often used on steel structures. However, it has recently been found that the strength of their connections decreases because of cyclic thermal expansion. In this research, cyclic tests simulating the thermal expansion were performed to obtain knowledge on the fatigue damage caused by thermal expansion. The following result was found: iron parts referred to as "upper hangers" get damaged due to cyclic thermal expansion, but their fatigue life can be predicted by means of improving the existing fatigue life law. Finally, a new method to evaluate the fatigue damage life of folded plate roofs is proposed, and an evaluation example for preventing fatigue damage is described.

概 要

二重折板屋根は気密性・断熱性などに優れた屋根構法として、工場・倉庫等の鉄骨造建築で比較的多く用いら れている。しかし近年、熱伸縮の繰返しに伴って接合部の強度が低下し、設計風速以下でも強風被害の生じるこ とが問題となっている。そこで、熱伸縮に起因する接合部の品質劣化を防ぎ、強風被害を防止することを目的に、 はぜ締め形二重折板屋根を対象として、熱伸縮を模擬した水平変位繰返し試験を行った。試験の結果、はぜ締め 形二重折板屋根では「吊子」と呼ばれる金物が疲労損傷し、熱伸縮の繰返しに対して弱点となることが分かった。 さらに、この吊子の疲労損傷寿命は既往の寿命推定則を援用した評価式で評価できることが分かった。最後に、 試験から得た疲労寿命評価式を用いて、具体的な熱伸縮に対する疲労検討例を示した。

1. はじめに

二重折板屋根は気密性・断熱性などに優れた屋根構法 として,工場・倉庫等の鉄骨造建築で比較的多く用いら れている。二重折板屋根(はぜ締め形)は多くの部品から 構成されており(Fig.1参照),上葺折板に作用した風圧力 は種々の金物(上吊子,断熱金具,下吊子,タイトフレ ーム,以下これらを接合部と総称する)を介して構造躯 体(母屋)に伝達される。しかし近年,熱伸縮の繰返し に伴って接合部の強度が低下し(以下「疲労」と称す), 設計風速以下の風でも二重折板屋根が飛散するなどの被 害が問題¹²²となっている。そのため,熱伸縮に起因する 接合部の品質劣化を防ぎ,耐風性能を維持することが求 められている。

Photo 1は熱伸縮によって二重折板屋根の接合部の一 部であるボルト(重ね形, Fig. 2参照)が疲労破壊した被害 事例である。上葺折板は外気温の変化や日射の有無よっ て伸縮するため(Photo 1の⇔方向),接合部には応力が発 生する。熱伸縮が何度も繰返されると、応力伝達の主体 であるボルトが疲労破壊するのである。

本報では、熱伸縮に起因する強風被害の防止を目指し て、水平繰返し試験に基づいた二重折板屋根の疲労検証 法について紹介する。ここでは、熱伸縮量・繰返し数を パラメータとした水平繰返し試験を行い、熱伸縮の繰返 しに対して弱点となる部位を特定するとともに、当該部 位の損傷寿命を既往の寿命推定則を用いて評価する。さ らに,具体的に二重折板屋根の与条件(建物供用期間,屋 根長さ等)を設定し,この条件下における疲労損傷の危険 性を,先の寿命評価法を用いて検討する。

Fig. 1 二重折板折板(はぜ締め形)の例 Example of Folded Plate Roof

Photo 1 熱伸縮による接合部 (重ね形)の被害事例 Example of Connection Damage by Thermal Expansion

Fig. 2 研板の接合方法 Connections of Folded Plate Roof

Table 1 試験体一覧 List of Specimen

			_		
No.	試験体名	熱伸縮量	繰返し数	接合部間隔	接合部数
		S_{max} (mm)	N_{max} (回)	<i>p</i> (m)	(個)
1	A20-015-32	± 20	150	3.0	2
2	A10-6-32	± 10	6,000	3.0	2
3	A5-12-32	± 5.0	6,000	3.0	2
4	A7.5-12-32	± 7.5	12,000	3.0	2
5	A20-6-32	± 20	12,000	3.0	2
6	A10-6-12	± 10	6,000	1.0	2
7	A15-6-22	± 15	6,000	2.0	2
8	A10-12-14	± 10	6,000	1.0	4
9	A5/10-12-14	$\pm 5/\pm 10$	6,000	1.0	4

Fig. 3 試験体形状および載荷状況 Test Specimen and Loading Condition

2. 試験概要

二重折板屋根の接合方法は3種類に大別される³⁾(Fig.2 参照)。Fig.1に示すはぜ締め形,Photo1に示す重ね形に 加え,かん合形が存在する。ここでは,近年使用される ことが多い働き幅(1山分)500mmの「はぜ締め形」二重折 板屋根を試験対象とする。

Table 1に試験体一覧, Fig. 3に試験体形状および載荷 状況を示す。試験は熱伸縮を模擬した強制水平変位を上 葺折板に与える水平変位繰返し載荷である。この水平変 位により,上吊子,断熱金具,下吊子,タイトフレーム は、すべりを伴いながら強制的に変形する(Fig. 4参照)。

試験体は幅が500mm(1山分),山高160mmであり,全長 (上葺折板長さ)4m,接合部が2箇所のものを標準とする。 試験パラメータは熱伸縮量,繰返し数,接合部間隔,接 合部数,載荷方法(一定・変動)であり,試験体によって 上葺折板の全長(2~4m)は異なる。

接合部の名称として,接合部が2箇所の試験体にあって はジャッキに近い側を接合部①,ジャッキに遠い側を接 合部②と称す(Fig. 3参照)。また,接合部が4箇所の試験 体では,接合部①および接合部②の間に接合部③および 接合部④を設ける(Fig. 3参照)。試験方法は、接合部①に おける上葺折板の水平変位を制御変位として、熱伸縮(強 制変位)量 S_{max} (繰返し数 N_{max})を与える一定振幅繰返し載 荷である。ただし,試験体A5/10-12-14に関しては, S_{max} =±5mmと S_{max} =±10mmを各80回,20回ごとに繰返す変動振

 $S S_{jt}$ S_{rj}

 S_t

Fig. 4 接合部各部の変位成分の定義 Definition of various deformation

Fig. 5 載荷スケジュール(試験体 A5/10-12-14) Loading Schedule (Specimen A5/10-12-14)

幅繰返し載荷とする(Fig. 5参照)。

計測項目は水平荷重Qおよび上葺折板の水平変位Sの ほか,次に示す3種類の水平相対変位も計測する。

,S:タイトフレーム--母屋(不動点)間の相対変位

- jiS:断熱金具-タイトフレーム間の相対変位(すべりを含む)
- _{ri}S:上葺折板-断熱金具間の相対変位

3. 試験結果

3.1 破壊性状

主な破壊性状は次の2種類である(Photo 2参照)。

・タイトフレームの損傷(き裂・破断)

・上吊子の損傷(き裂・破断)

Table 2に上吊子の損傷(き裂・破断)発生回数を示す。 上吊子の損傷は、き裂発生が予想される位置に貼付した 2枚のひずみゲージ値から判断した。すなわち、Photo

Duniage Cycle of Opper Hanger									
No.	試験体名	上吊子掛	N_f (回)						
		接合部①	接合部②	接合部③	接合部④				
1	A20-015-32	I	-						
2	A10-6-32	-	3,800						
3	A5-12-32	-	-						
4	A7.5-12-32	-	-						
5	A20-6-32	3,350	750						
6	A10-6-12	5,850	3,150						
7	A15-6-22	5,450	1,050						
8	A10-12-14	2,700	_	2,750	_				
9	A5/10-12-14	10,080	3,080	7,299	6,199				

Table 2 上吊子の損傷発生回数 Damage Cycle of Upper Hanger

: ひずみゲージ貼付位置

(a)上吊子の損傷(き裂・破断)

Photo 2 破壊状況 Damage Situation

2(a)の□に示す2箇所(東・西)にひずみゲージを貼付し, このひずみゲージが断線した時,もしくは正負変位ピー ク時のひずみ値がほぼ同じ値となった時の繰返し数Nを, 上吊子の損傷発生回数N_fとした。試験体A10-6-12を例と して,変位ピーク時の上吊子ひずみ-繰返し数N関係を Fig. 6に示す。図中の破線は上吊子損傷回数N_fを表す(Fig. 7およびFig. 8においても同じ)。

タイトフレームの破壊性状について説明する。タイト フレームのき裂はA20-015-32(繰返し数N_{max}=150)を除く すべての試験体で生じた。また試験体A10-12-14では,一 部の接合部でタイトフレームの脚部が破断(き裂が全断 面を貫通)した。この試験体は接合部②における上吊子の 取付けボルト(Photo 2中の〇印参照)の締付けが不十分で あった。試験体A10-12-14以外では、タイトフレームの破 断は生じていない。

次に、上吊子の破壊性状に関して説明する。強制変位 量が小さな $S_{max}=\pm 5$ mm、 $S_{max}=\pm 7.5$ mmの試験体では、繰 返し数が $N_{max}=12,000$ 回に至っても上吊子が損傷(き裂・破 断)しない。一方、強制変位量が大きな $S_{max}=\pm 20$ mmの試 験体では、 $N_{f}=750$ 回で上吊子が損傷している。これから、 熱伸縮量の大小が上吊子の損傷に大きく影響することが 分かる。

熱伸縮によって上吊子が損傷することは耐風性能の劣 化に直結することとなり,はぜ締め形二重折板屋根の耐 風設計では,上吊子の疲労損傷を検証することが重要と なる。

3.2 熱伸縮の繰返しに伴う水平荷重の推移

熱伸縮の繰返しと水平荷重Qの関係について考察する。 Fig. 7に6種類の試験体について、変位ピーク時の水平荷 重 Q_{max} ー繰返し数N関係を示す。図には、上吊子の損傷 回数 N_f を示す。変動振幅試験体であるA5/10-12-14につい ては、 $S_{max}=\pm5$ mm、±10mmの場合を示す。

全体的な性状を見ると,接合部が2箇所の試験体に関しては、上吊子損傷時に水平荷重Qmaxが大きく減少することが分かる(同図(a)~(c)参照)。一方,接合部が4箇所の試験体に関しては、このような傾向が顕著には現れていない(同図(e)(f)参照)。

パラメータの影響を、Fig.7において考察する。

1) 強制変位量S_{max}の影響について (同図(a)(b)参照)

強制変位量の大きなA20-6-32(*S_{max}*=±20mm)は A10-6-32(*S_{max}*=±10mm)に比べて,上吊子が早期に損傷

2. 7 愛位ビーク時の何里 Q_{max} 一練返し数 N 候 Peak Load Q – Cycle N Relationship

するため、 Q_{max} も早期に劣化している。逆に強制変位 量の小さなA5-12-32(S_{max} = ± 5mm)は繰返し数が N=12,000に至っても上吊子は損傷せず、水平荷重 Q_{max} は2.0kN程度で安定的に推移している(同図(d)参照)。

2) 接合部間隔の影響について (同図(a)(c)参照)

接合部間隔が小さいA10-6-12(*p*=1m)はA10-6-32(接 合部間隔*p*=3m)に比べて,若干早期に上吊子が損傷し, *Q_{max}*も若干早期に劣化する。

3) 接合部数の影響について (同図(a)(e)参照)

接合部が4箇所のA10-12-14と接合部が2箇所のA10-6-32を比べると、載荷初期の Q_{max} は前者が約8kN、後者が約4kNであり、 Q_{max} は概ね接合部数に比例している。しかし、Nが増加するにつれて、A10-6-32は Q_{max} が増減するのに対し、A10-12-14は Q_{max} が漸減する。したがって、載荷初期以外では接合部数に比例する履歴とはなっていない。

4) 振幅の種類(一定・変動)の影響について (同図(e)(f) 参照)

変動振幅試験体A5/10-12-14は一定振幅試験体に比べて,強制変位 S_{max} =±10mmの回数がかなり少ないものの,変位ピーク時(S_{max} =±10mm)の Q_{max} -N関係は概ね同じ履歴である。

以上より,上吊子の損傷回数や,変位ピーク時の水平 荷重Q_{max}は,強制変位量,繰返し数,接合部間隔,接合 部数,振幅の影響を受けることが分かる。

4. 上吊子の損傷寿命の評価

建物供用期間を通して接合部が設計耐力を維持するた めには、上吊子の疲労損傷に対する設計が重要となる。 本章では、熱伸縮が生じても上吊子が損傷しない熱伸縮 量・繰返し数の範囲を実験的に定める。

4.1 上葺折板-断熱金具間の相対変位による寿命評価

Fig. 4に示す通り,上葺折板の熱伸縮量Sは,さまざま な構成部品の変位成分の累加となる。ここでは上吊子の 損傷に影響する変位成分として,上葺折板-断熱金具間 の相対変位_{rj}Sに着目する。この_{rj}Sの正負ピーク時の差分 を上葺折板-断熱金具間相対変位振幅Δ_{rj}Sとし,Δ_{rj}Sと上 吊子の損傷との関係を考察する。

Fig. 8に接合部が2箇所の4試験体について,上葺折板-断熱金具間相対変位振幅Δ_rS-繰返し数N関係を示す。図 より

- ①相対変位振幅Δ_{rj}Sは繰返し数Nの変化に伴って増減 すること
- ②上吊子の損傷回数N_fにおいて相対変位振幅Δ_{ri}Sは大きく増加すること

がわかる。①のように相対変位振幅 Δ_{rr} Sが増減するのは、 断熱金具のすべり(剛体移動)(Photo 2(c)参照)が、繰返し を通して変動するためと考察する。

ここでは、下式(1)で求める平均相対変位振幅 $\Delta_{ri}S_{ave}$ を

大林組技術研究所報 No.72 二重折板屋根の熱伸縮に対する疲労損傷評価

Fig. 9 平均相対変位振幅Δ_{rj}S_{ave}一繰返し数 N 関係 Average Relative Displacement Amplitude Δ_{rj}S_{ave} – Cycle N Relayionship

導入して, 上吊子の損傷を考察する。

$$\Delta_{rj}S_{ave} = \frac{1}{N}\sum_{i}^{N}\Delta_{rj}S_{i} \tag{1}$$

上吊子が損傷する場合:N=N_f(Fig. 2参照)

上吊子が損傷しない場合: *N=N_{max}* (Fig. 1参照) Fig. 9に平均相対変位振幅Δ_{rj}S_{ave}-繰返し数N関係(対 数表示)を示す。ここでは、上吊子が損傷した13箇所の接 合部(Table 2参照)を「×」で表し、所定の繰返し数*N_{max}* に至っても上吊子が損傷しなかった8箇所の接合部を 「○」で表す。なお、既往の試験結果⁴⁾も併記する。

Fig. 9より、上吊子が損傷した接合部(×)については、 平均相対変位振幅 $\Delta_{rf}S_{ave}$ と繰返し数 N_f の間には明瞭な負 の相関が見られる。そこで、疲労寿命則の1つである Coffin-Manson則を援用して、下式(2)の形で回帰式を求め る。

$$\Delta_{rj}S_{ave} \cdot N_f^{\alpha} = C \tag{2}$$

一定振幅試験体のうち、上吊子が損傷した9箇所の接合
部(Table 2参照)を用いれば、定数αとCは次の値となる。
α = 0.535
C = 355
(3)
Fig. 0/2は回帰式(2)を示す。

いた式(2)は、いずれの試験パラメータ(強制変位量,繰返 し数,接合部間隔,接合部数,振幅の種類)に対しても, 上吊子の損傷寿命を精度良く評価できることが分かる。

4.2 熱伸縮量による寿命評価

前節では、平均相対変位振幅 $\Delta_{rj}S_{ave}$ で接合部(上吊子) の損傷寿命を評価できることが分かった。しかし、 $\Delta_{rj}S_{ave}$ の挙動は複雑であり、その定量的な把握は困難である。 一方、設計の観点からは、上葺折板の熱伸縮量 S_{max} で接 合部(上吊子)の損傷寿命を推定できることが望ましい。 そこで、全熱伸縮量($2S_{max}$)に占める平均相対変位振幅 $\Delta_{ri}S_{ave}$ の割合 β (下式(4))を調べる。

$$\beta = \frac{\Delta_{rj} S_{ave}}{2 \cdot S_{max}} \tag{4}$$

Fig. 10に割合 β と熱伸縮量 S_{max} の関係を示す。図中では、 一定振幅載荷と変動振幅載荷に区別して示す。変動振幅 載荷では、 $S_{max}=\pm5$ mmと $S_{max}=\pm10$ mmの強制変位が4:1に 回数比で載荷されるため、ここでは回数による重み付け により、 $S_{max}=\pm6$ mmとして割合 β を求めた。

Fig. 10より, 一定振幅載荷では, *S_{max}の増加に伴って*最大0.3程度まで割合βは漸増すること, 全般的に接合部① に比べて接合部②の割合βは大きいことが分かる。一方, 変動振幅載荷の場合, 割合βは*S_{max}が*同程度の一定振幅試 験体に比べて大きい。

ここでは、一定振幅載荷の接合部②の結果から、βの 値を下式(5)で近似する。

$$\beta = 0.09216 \cdot S_{max}^{0.397} \tag{5}$$

以上の式(2)~式(5)より,熱伸縮量*S_{max}と*上吊子の損傷回 数*N_fとの*関係が下式(6)で求まる。

$$S_{max} \cdot N_f^{0.383} = 224 \tag{6}$$

Fig.9 の縦軸を熱伸縮量に変換し,式(6)を併記した図 をFig. 11に示す。Fig. 11より,式(6)は実験での損傷発生 回数の下限に概ね対応している。なお,変動振幅試験体 については,回数による重み付けで熱伸縮量を評価する と,変位割合βが大きくなり,式(6)では危険側の評価と なる。ここでは変動振幅載荷に関してもS_{max}=±10mmの 一定振幅載荷とみなすことで,式(6)により安全側に評価 することができた。種々の熱伸縮量を含む変動振幅載荷 についても,熱伸縮量が等価とみなせる一定振幅載荷と して扱える方が,寿命評価上は望ましい。そのため変動 振幅載荷における等価熱伸縮量の評価が今後の課題とな る。折板の温度は1日の間で小刻みに変化する⁵⁾ものであ り,その影響を熱伸縮評価上は考慮すべきだからである。

5. 熱伸縮疲労に対する二重折板屋根の検討例

接合部(上吊子)の寿命評価式(6)を用いて,熱伸縮疲労 に対する二重折板屋根の安全性の具体的な検討例を示す。 与条件を次のように定める。

- ・二重折板屋根の種類は製品A(本報で実験した製品)
- ・一日当りの上葺折板の温度変化±15℃(温度差30℃) (1日のうちの小刻みな温度変化は無視する)
- ・折板長さ 50m
- ·建物供用期間30年

折板の中央部(片側から25mの位置)を不動点とすれば, 軒先の折板の熱伸縮(自由伸縮)量Sは,線膨張係数を 1.2×10⁻⁵として

 $S = 1.2 \times 10^{-5} \times (\pm 15) \times 25 = \pm 4.5 mm \tag{7}$

供用期間中、熱伸縮が1日1回発生すると考えれば、繰返 し数Nは

$$N = 365 \times 30 = 10,950 \ \Box \tag{8}$$

この熱伸縮量Sと繰返し数数Nを寿命評価式(6)で評価 する。評価結果をFig. 11中に評価点■として示す。本図 より,この条件下では接合部(上吊子)が疲労損傷しない と判断できる。

6. まとめ

熱伸縮に起因する二重折板屋根の強風被害を防止す るため,熱伸縮を模擬した水平繰返し試験を行った。試 験より得られた結果は次のとおりである。

- ・熱伸縮の繰返しに対して弱点となる部位(本報では上 吊子)の損傷寿命は、Coffin-Manson則を援用した評 価式で推定できる。
- この寿命評価式を用いて二重折板屋根の疲労検証を 行えば、熱伸縮に起因する強風被害の危険性を低減 することができる。

なお,既往研究⁴⁾によれば,熱伸縮経験後に上吊子が 損傷(き裂・破断)していなければ,接合部の耐風性能(負 圧荷重に対する耐力)はほとんど劣化しない。そのため, 本手法で疲労損傷しないと判断できれば,屋根施工時(熱 伸縮未経験)と同等の耐風性能を有すると考えられる。

参考文献

- 日本建築学会:非構造部材の地震・風被害の軽減に 向けて、2007年度日本建築学会大会(九州)特別研究 部門研究協議会資料、2007.8
- 日本金属屋根協会:鋼板製屋根構法標準 SSR2007, 2008.1
- 日本工業規格: JIS A 6514 金属製折板屋根構成材, 1995
- 4) 時野谷浩良,浅井英克,鈴井康正:折板葺屋根の負 圧耐風性能に関する検討 その4 熱伸縮の繰返しが 二重折板屋根の接合部負圧耐力に及ぼす影響,日本建 築学会大会学術講演梗概集,B-1,pp.877-878,2007.8
- 5) 時野谷浩良, 鈴井康正, 浅井英克:金属系外装材の 耐風性能に及ぼす繰返し荷重の影響 その1 屋根温 度の実測事例,日本建築学会大会学術講演梗概集,A-1, pp.921-922, 2005.9