ポリプロピレン短繊維を用いた複数微細ひび割れ型 繊維補強セメント複合材料の開発

平田隆祥 川西貴士 岡野素之 渡辺 哲

Fundamental Studies of HPFRCC using Polypropylene Short Fiber

Takayoshi Hirata Takashi Kawanishi

Motoyuki Okano Satoshi Watanabe

Abstract

This paper describes a high performance fiber reinforced cement composite with a polypropylene short fiber. Polypropylene short fiber is used as a concrete admixture to improve various performances. For instance, this fiber is used to improve fire resistance, delamination resistance, and bending toughness. The purpose of this study was to verify the character and performance of the high performance fiber reinforced cement composite with a polypropylene short fiber. The results of the experiment indicate that this high performance fiber reinforced cement composite with a polypropylene short fiber possesses high tensile toughness. Further, the bend strength and shear strength of a reinforced concrete test beam was confirmed to have improved.roved.

概 要

ポリプロピレン短繊維は、火災時の爆裂抵抗性、はく離はく落対策および曲げじん性の向上などを目的とし、 セメント・コンクリート用混和材料として適用されている。一般に、ポリプロピレン短繊維は、セメントマトリ ックス中での化学的安定性や変形性、分散性に優れるとともに、ポリプロピレン樹脂自体に極性が無く、セメン トと化学的に結合しない特徴を有する。そこで、本報告では、多量に繊維を使用する場合のセメントマトリック ス中での分散性や、一体性を改良した連糸形状のポリプロピレン短繊維を「複数微細ひび割れ型繊維補強セメン ト複合材料」に適用し、その基礎物性や、はり部材による曲げおよびせん断性能について検討した。その結果、 ポリプロピレン短繊維を用いた「複数微細ひび割れ型繊維補強セメント複合材料」は、優れた引張じん性を有す るとともに、はり部材の力学的試験結果から、曲げおよびせん断耐力の向上を確認した。

1. はじめに

引張力を分担し、ひび割れ幅を微細に抑制し、大きな 引張変形とじん性を有するセメント系材料として「複数 微細ひび割れ型繊維補強セメント複合材料(High Performance Fiber Reinforced Cement Composite :以 FHPFRCCと表記)」があり、2007年3月に(社)土木学会 からその設計・施工指針(案)¹⁾(以下指針案と表記) が発刊された。このHPFRCCは、セメント系材料と補強用 の有機系短繊維を用いた複合材料で、一軸引張応力下に おいて、Fig.1に示すような擬似ひずみ硬化特性を示す とともに、微細で高密度の複数ひび割れを形成する高じ ん性材料である。

従来,このHPFRCCの補強用繊維として,有機系短繊維 であるポリビニルアルコール短繊維^{1),2)}や,高強度ポリ エチレン短繊維¹⁾が用いられている。

一方,現在セメント・コンクリートの分野で使用実績 が多い有機系短繊維に,ポリプロピレン短繊維(以下PP 繊維と表記)がある。このPP繊維は,セメンマトリック ス中での化学的安定性や変形性,分散性に優れるととも に、ポリプロピレン樹脂自体に極性が無く、セメントと 化学的に結合しない特徴を有する。

本報告では、多量の繊維を使用する場合に、セメント マトリックス中での分散性や、一体性を改良したPhoto1 に示す連糸形状のPP繊維に着目し、このPP繊維を用いた HPFRCCの材料特性について検討した。また、比重の異な る材料の分離を抑制するために、分離低減剤を用いた場 合の効果についても検討した。さらに、HPFRCCを用いた はり部材の静的曲げ実験を行い、曲げおよびせん断耐力 などの構造性能について検討した。

2. HPFRCCとは

HPFRCCは、引張応力下で降伏点を有するセメント複合 材料で、Photo 2 に示すように高い変形性能を有する材 料である。繊維の種類や長さ、添加量、セメントや粉体 の種類を厳選して練混ぜ水と混合することで、ひび割れ が発生する際に生じる引張力よりも、ひび割れを架橋す る繊維の引張力を大きくすることが可能となる。

これにより、Photo 3 に示すように発生するひび割れ

Photo 1 使用したPP繊維 Polypropylene Short Fibers

幅を微細に制御することができ,高いじん性や伸び能 力,耐久性が得られる。このHPFRCCは、下記の適用が 考えられる。

- 1) 疲労を受ける床版部材
- 2) ひび割れ幅制御型・高耐久性補修補強部材
- 3) エネルギー吸収部材
- 4) 耐火被覆材

З. 材料の基礎物性確認実験結果と考察

実験に使用したモルタル配合をTable 1 に示す。水 結合材比47%の配合(PP-47)を基本に、付着力の向上 を目的として,水結合材比を低減し,分離低減剤を添 加した水結合材比(PP-42)についても併せて検討を 行った。いずれもPP繊維は、3.0vo1%添加した。

実験に使用したPP繊維の物性をTable 2 に示す。こ のPP繊維は、Photo 1 に示すように、多量の繊維を添 加する場合に,練混ぜ時の分散性を向上することを目 的とし、連糸形状に工夫したものである。

練混ぜ方法は、強制練り2軸ミキサを使用し、モル タルを180秒間練り混ぜた後、繊維を一括投入し、さ らに120秒間練混ぜを行った。

試験は、フレッシュの特性としてモルタルのスラン プフロー, JISフローおよび空気量を測定し, 硬化後 の特性として, 圧縮強度試験と一軸直接引張試験を実 施した。

Photo 2 HPFRCCボードの曲げ載荷状況 Bending test of HPFRCC Board

Photo 3 複数微細ひび割れ発生状況 Condition of Many Fine Cracks

Table 1 モルタルの配合 Mixed Proportion of Mortar

	*								
配合の種類	W/B	S/B	W	分離 低減剤	PP繊維				
	(%)		(kg/m ³)	(kg/m ³)	(vol%)				
PP-47	47.0	0.83	385	_	3.0				
PP-42	42.0	0.69	350	0.4	3.0				

Table 2 PP繊維の物性 Material of Polypropylene Short Fiber

使用繊維	繊度	長さ	引張強度	ヤング係数
	(dtex)	(mm)	(N/mm^2)	(N/mm^2)
ポリプロピレン短繊維 (PP繊維)	13	12	482	5000

Fig.2 試験体の形状

Photo 4 一軸直接引張試験 Tensile Strength Test Piece Uni-axial Tensile Strength Test

 Table 3
 フレッシュおよび硬化後の特性

 Test Results of HPFRCC

		フ	硬化後の特性						
試験体 種類	試験	試験 スランプフロー JI		フロー (mm) 空気量		圧縮強度	引張降伏 強度 引張強度		引張終局 ひずみ
	吁别	(cm)	0打	15打	(%)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(%)
PP-47	直後	59.0×58.0 (58.5)	173×158 (166)	238×230 (234)	8.0	21.5	2.2	4.5	3.2
PP-42	直後	59.0×57.0 (58.0)	170×162 (166)	235×229 (232)	9.2	24.1	2.5	4.4	3.6

※硬化後の特性の各試験結果は、いずれも3本の平均を示す。

Photo 5 モルタルのスランプフローおよびJISフローの試験状況

Slump and JIS Flow of HPFRCC

Photo 6 ひび割れの発生状況 Fine Cracks of Test Piece

Relationship Between time and JIS Flow,Air

ー軸直接引張試験は、Photo4に示す試験装置を用い、 指針案に準拠して行った。Fig.2に示す幅30mm×厚さ 13mmのダンベル型の試験体を使用して、0.5mm/分の変位 制御で載荷を行った。圧縮強度試験および一軸直接引張 試験は、材齢28日で実施した。

3.1 フレッシュおよび硬化後のHPFRCCの特性

フレッシュおよび硬化後のモルタルの特性をTable 3 に示す。また, PP-47のスランプフローおよびJISフロー の試験状況をPhoto 5 に示す。

両モルタル配合とも、スランプフローは58cm程度,15 打フローは230mm程度となり、十分な自己充てん性を有し ていることが確認できた。また、フレッシュの状態は良 好であり、材料分離は発生せず、繊維の分散も良好だっ た。

PP-42のフレッシュの経時変化をFig.3に示す。練混ぜ 後90分の段階でも,15打フローは,200mm以上確保された。 空気量は,ほとんど変化が認められず,8%~9%の間で推 移した。

Fig.5 引張応力-ひずみ曲線 (PP-47) Tensile-strain Diagram (PP-47)

3.2 HPFRCCの引張応力とひずみの関係

ー軸直接引張試験から得られた引張応カーひずみ曲線 をFig.4, Fig.5 に示す。いずれの試験体も引張強度は4 N/mm²~5N/mm²程度であり,圧縮強度との比率は1/5~1/6 と比較的大きな値を示した。両配合ともに,初期ひび割 れ発生後から軟化開始点まで,引張応力は常に初期ひび 割れ強度を上回り,擬似ひずみ硬化特性が確認できた。 従って,引張降伏強度と初期ひび割れ強度は同じ値と なった。

初期ひび割れ強度は、PP-42の方がPP-47に比べて若干 高い値を示した。これは、PP-42の方がPP-47に比べて、 圧縮強度が高く、分離低減剤の添加により、繊維の付着 力が高まったことに起因していると考えられる。また、 引張終局ひずみはいずれも3%程度となった。

ひび割れの発生状況は、Photo 6 に示すように試験区 間内において一箇所に偏ることなく、微細で高密度の複 数ひび割れが発生しており、良好なひび割れ分散性を示 した。

4. 構造性能確認実験結果と考察

PP繊維を用いたHPFRCC部材の曲げとせん断耐力がどの 程度向上するか、および、部分的なHPFRCCの使用による 補強効果がどの程度であるかの知見と、基礎データを得 るため、はり部材による構造性能確認実験を行った。

試験体の種類をTable 4 に示す。試験体の断面は,幅 200mm×高さ300mmで,曲げ破壊型とせん断破壊型の試 験体合計5体について実験を行った。

曲げ破壊型の試験体は、1/3の範囲にHPFRCCを適用した試験体B-FCSと、全断面にHPFRCCを適用した試験体B-F Sの2種類とした。一方、せん断破壊型の試験体は、コン クリートのみの無垢な試験体S-Cと、全断面にHPFRCCを 適用した試験体S-F,および全断面にHPFRCCを適用し、 かつ帯鉄筋を配置した試験体S-FSの3種類とした。

載荷実験は, Fig.6 に示すようにローラー支承とし, スパン中央に対し左右対称の2点に対して1方向に載荷 する曲げ型のはり形式で, せん断スパン比は2.4とした。

コンクリートおよびHPFRCCの配合をTable 5 に示し, それらの物性をTable 6 に示す。また,使用した鋼材の 物性をTable 7 に示す。HPFRCCの配合は,前章の基礎的 検討で使用したPP-47の配合を元に,分離低減剤を添加し た配合とした。HPFRCCの圧縮強度と割裂引張強度は,と もにコンクリートを2割程度上回った。また,ヤング係数 はコンクリートよりも低い値を示した。

4.1 曲げ破壊型試験体

実験結果の一覧をTable 8 に示す。曲げ破壊型の試験 体の荷重と変位の関係をFig.7 に示す。また,各試験体 の終局時の破壊状況をPhoto 7, Photo 8 に示す。

曲げ破壊型はり部材のひび割れ発生状況は,通常のは り部材と比較して,ひび割れ本数が多く,分散性が高い ことが確認できる。

1/3の範囲にHPFRCCを適用した試験体B-FCSは、34kNで 曲げひびわれが発生し、主鉄筋が175kNで降伏した後、荷 重の上昇は緩やかになり変位65mmで最大220kNに達した。 その後100mmまで降伏荷重を維持した。一方、試験体B-FS は47kNで曲げひびわれが発生し、主鉄筋が175kNで降伏し た後、荷重の上昇は緩やかになり変位65mmで最大227kN

Table 4 試験体の一覧 List of Specimens

形式	曲げる	皮壊型	せん断破壊型			
試験体	B-FCS	B-FCS B-FS		S-F	S-FS	
試験体の 概略図 (断面の 着色部位に HPFRCCを 適用)			••	•		
	1/3の範囲 HPFRCC	全断面 HPFRCC	HPFRCC なし	全断面 HPFRCC	全断面 HPFRCC	
主鉄筋	D19(SD295)		φ23	ル ーブ)		
帯鉄筋	D6@75(SD345)		なし		D6@150 (SD345)	

Table 5 コンクリートおよびモルタルの配合

Mixed Proportion of Concrete and Mortar

配合の種類	W/B	s/a	S/B	W	分離 低減剤	PP繊維
	(%)			(kg/m ³)	(kg/m ³)	(vol%)
コンクリート	45.0	45.0	_	160	_	_
HPFRCC	47.0	_	0.83	385	0.3	3.0

Table 6 コンクリートおよびモルタルの物性 Mechanical Properties of Concrete and Mortar

配合の種類	記合の種類 圧縮強度		ヤング係数	
	(N/mm ²)	(N/mm ²)	$(x10^4 \text{ N/mm}^2)$	
コンクリート	31.1	2.55	2.53	
HPFRCC	39.1	3.16	1.54	

Table 7 鋼材の物性 Mechanical Properties of Steels

鋼材の 使用部位	サイズ	材質	降伏点	ヤング係数
			(N/mm ²)	$(x10^4 \text{ N/mm}^2)$
十分分	D19	SD295	327	1.93
土釱肋	φ23	ゲビンデスターブ	1138	2.02
帯鉄筋	D6	SD345	371	1.95

Outline of Specimens

に達した。その後110 mmまで降伏荷重を維持した。断面の引張側1/3の範囲にHPFRCCを適用した試験体B-FCSは、 全断面にHPFRCCをいた試験体B-FSとほぼ同程度の耐力を 保持した。

曲げ破壊型試験体の曲げ耐力は、PP繊維を混入してい ない通常のRC部材の曲げ耐力計算値が144kNであるのに 対して、HPFRCCを全断面に適用した試験体B-FSの実験値 は227kNであり、1.57倍となった。これは、PP繊維が引張 力を分担しているためと考えられる。

また,曲げ耐力は,指針案に準拠して算出した耐力計 算値(B-FCS:194kN, B-FS:228kN)と実験値(B-FCS:220 kN, B-FS:227kN)とがほぼ一致している。両試験体間の 曲げ耐力の差が小さい理由としては,繊維がひび割れ後 の引張力を分担するため,圧縮縁から遠い部位が支配的 となることが考えられる。

4.2 せん断破壊型試験体

実験結果の一覧をTable 8に示す。せん断破壊型の試験 体の荷重と変位の関係をFig.8 に示す。また、各試験体 の終局時の破壊状況をPhoto 9 ~Photo 11 に示す。

せん断破壊型はり部材の破壊状況は、コンクリートの みの試験体S-Cと比較して、全断面にHPFRCCを適用した試 験体S-Fおよび試験体S-FSの方が、明らかにひび割れ分散 性が高いことが確認できる。

いずれの試験体の最大荷重とも、指針案に準拠して算 出したせん断耐力の計算値と比較して、実験値の方が大 きい値を示した。コンクリートのみの試験体S-Cについて は、曲げひび割れ発生荷重が47kNであり、変位4.7mmで最 大荷重170kNに達した。せん断耐力の計算値は73kNであり、 計算値の2.3倍となった。

それに対して、全断面にHPFRCCを適用した試験体S-F は、曲げひび割れが63kNで発生し、変位10.4mmで最大荷 重400kNに達した。また、試験体S-FSは、曲げひび割れが 55kNで発生し、変位14.3mmで最大荷重482kNに達した。

せん断耐力の計算値は、試験体S-Fが370kN,試験体S-FSが438kNであり、両者とも計算値と実験値を比較すると、 実験値が1割程度大きい値となり、計算値とほぼ一致する 結果となった。

せん断耐力について、コンクリートとHPFRCCを比較す ると、試験体S-Cの実験値が170kNであるのに対して、全 断面にHPFRCCを適用した試験体S-Fは400kNであり、2.35 倍までせん断耐力が向上した。圧縮強度の増分を考慮し ても、大幅なせん断耐力の増加効果が認められた。

次に、帯鉄筋の有無がせん断耐力に及ぼす影響を比較 すると、帯鉄筋を配置していない試験体S-Fの実験値が 400kNであるのに対して、帯鉄筋を配置した試験体S-FS の実験値は482kNであり、せん断耐力が82kN向上した。

一方,試験体S-Fのせん断耐力の計算値は370kN,試験 体S-FSの計算値は438kNであり,計算値の差分は68kNとな った。以上の結果より,実験で確認した帯鉄筋のせん断 耐力の分担分は,指針案に示されている算定式よりも,

Table 8 実験結果の一覧 Experimental Results

形式	試験体	実験値(kN)		計算值 [※]	宝瞈値	
		最大 荷重	せん断 破壊荷重	曲げ 耐力	せん断 耐力	計算值
曲げ	B-FCS	220	-	194	-	1.13
破壊型	B-FS	227	-	228	-	1.00
せん断 破壊型	S-C	-	170	-	73	2.33
	S-F	-	400	-	370	1.08
	S-FS	-	482	_	438	1.10

※計算値は指針案に準拠して算出

Fig. 7 曲げ破壊型の試験体の荷重と変位の関係 Load-Displacement Relationship of Specific Flexural Failure

Photo 7 終局時の破壊状況 (B-FCS) Ultimate State of Specimen (B-FCS)

Photo 8 終局時の破壊状況 (B-FS) Ultimate State of Specimen (B-FS)

Fig.8 せん断破壊型の試験体の荷重と変位の関係 Load-Displacement Relationship of Specific Shier Failure

Photo 10 終局時の破壊状況(S-F) Ultimate State of Specimen (S-F)

大きな値となっており,安全側に評価できることが確認 できた。

5. まとめ

ポリプロピレン短繊維を3.0vol%添加したセメント複 合材料について、材料の基礎物性と、はり部材による構 造性能を確認した結果、以下の知見が得られた。

- 1) スランプフローで58cm程度, 15打フローで230mm程度 の流動性を確保でき, 自己充てん性を有する。
- 2) 硬化後は、初期ひび割れ発生後も引張応力が増加し、 擬似ひずみ硬化特性を有する。
- 3) 微細で高密度の複数ひび割れの形成により,3%程度 の引張終局ひずみとなる引張変形性能を有する。
- 4) HPFRCCを適用したはり部材は、一般のRCはり部材 と比較して、ひび割れの分散性が向上する。
- 5) はりの曲げ耐力は、一般のRC部材の計算値と比較し て5割以上増加した。また、曲げ耐力は、土木学会の 設計・施工指針(案)に準拠した計算値と概ね一致 する。

Photo 9 終局時の破壊状況(S-C) Ultimate State of Specimen (S-C)

Photo 11 終局時の破壊状況(S-FS) Ultimate State of Specimen (S-FS)

- 6)はり部材の引張側1/3の範囲にHPFRCCを適用する ことで全断面に適用する場合と同程度に曲げ耐力が 向上する。
- 7) 全断面にHPFRCCを適用したはり部材のせん断耐力 は、コンクリートのみのはり部材と比較すると約2 倍以上に向上した。
- 8) 土木学会の設計・施工指針(案) に示されているせん断耐力の算定式は,安全側に評価できる。

参考文献

- 土木学会:複数微細ひび割れ型繊維補強セメント複合材料設計・施工指針(案),コンクリートライブ ラリー,No.127,2007.3
- 2) Li, V. C. etc. :Micromechanics-based Durability Study of Polyvinyl Alcohol-Engineered Cementitious Composite (PVA-ECC), ACI Materials J., Vol. 101, No. 3, pp. 242-248, 2004