実大免震建物の擁壁衝突実験

三輪田 吾 郎 佐 野 剛 志

勝侯英雄

Experiments of Collision to Retaining Wall with Real-Scale Base-Isolated Building

Goro Miwada Takeshi Sano

Hideo Katsumata

Abstract

A base-isolated building may be damaged because of collisions with a retaining wall during a mega-earthquake. Recently, a few studies have shown the earthquake response analysis of collisions with a retaining wall using a restoring force characteristic of the retaining wall. However, this characteristic has not been validated experimentally. To obtain such experimental data, we conducted experiments of collisions to a real-scale base-isolated building with a retaining wall. In our experiments, an initial relative displacement was introduced between the basement and the first floor using rapid relief jacks. Then, by unloading the jacks, the superstructure was collided with the retaining wall. The result of our experiments shows that the restoring force characteristic of the retaining is very important for the earthquake response analysis of a base-isolated building collided with a retaining wall.

概 要

免震建物の擁壁衝突に関する既往の解析検討では、重要な解析諸元である擁壁の復元力特性の裏付となる実験 データを示した報告が少ない。そのため筆者らは解体予定の実大免震建物を用いて上部建屋を擁壁に衝突させる 実験を実施した。実験は RC 造 5 階建の免震建物の上部建屋にジャッキで初期変位を与えた後、ジャッキの荷重 を急速に開放し、積層ゴムの復元力により上部建屋を擁壁に衝突させるものである。初期変位を 100mm 与えた衝 突実験では、擁壁に最大 650kN の荷重と 25mm の変位が生じ、擁壁の復元力特性は弾塑性性状を示した。実験後 には衝突箇所の擁壁における局所的なひび割れや、擁壁 - 背後地盤間の間隙の発生、上部建屋 1 階柱脚のひび割 れを確認した。本実験により、免震建物の擁壁への衝突現象を分析する上で重要な知見を得ることができた。

1. はじめに

近年,巨大地震が発生した際に,免震建物の上部建屋 が擁壁に衝突し,上部建屋が損傷する可能性が指摘され ている。擁壁衝突が上部建屋の応答に及ぼす影響を評価 するためには,擁壁衝突実験結果や実地震時の擁壁衝突 記録を基に作成したシミュレーションモデルを用いて地 震応答解析を行う必要がある。

免震建物の擁壁への衝突については、これまでに縮 小模型による実験¹⁾や解析検討^(例えば2)~6)が報告され ているが、実大免震建物の擁壁衝突実験は報告されてい ない。また、大地震時の免震層層間変位観測例として、 国内では 2003 年十勝沖地震により釧路市内の免震建物 で 30cm 程度の免震層層間変位が観測された事例を筆頭 に数件の観測報告^(例えば7)~9)がなされているが、擁壁衝 突事例の報告は無い。国外では 1994 年ノースリッジ地震 で、ロサンゼルスの免震建物において、外構から建物入 口への架橋と免震建物との衝突事例の報告¹⁰⁾がある。 しかし、この衝突は滑動するよう設計された架橋の施工 不具合に起因したもので,上部建屋の擁壁への衝突現象 を検討するために有益な情報を提供する事例ではない。

この様に、現状では大地震時に免震建物の擁壁衝突の 影響を検討するための実験データや観測データは非常に 少ない。また、地震観測システムを備えた免震建物であ っても擁壁に荷重計等は設置されていないため、擁壁衝 突を考慮したシミュレーションモデルで特に重要な解析 諸元である擁壁の復元力特性を、観測データから直接得 ることは困難である。

これらの状況を踏まえ,解体予定の実大免震建物の擁 壁衝突実験を実施した。本報は,擁壁衝突実験における 擁壁の復元力特性並びに上部建屋の衝突時挙動を明らか にすることを目的とする。

2. 実験概要

2.1 建物概要

実験対象とした免震建物は、東京都清瀬市の大林組技 術研究所内の免震オフィスビル(ハイテク R&D センタ ー)である。免震建物の概要をTable 1に、実験時の免 震建物外観および衝突対象とした擁壁をPhoto 1, Photo 2 に示す。この免震建物は、1986年1月に日本建築セン ターによる評定(評定番号:免3)を受け、同年8月に竣 工し、2009年7月の衝突実験後、同年8月に解体した。
 2.1.1 上部建屋 上部建屋は地上5階、延床面積 1,600m²、質量約2,600tのRC造である。上部建屋の軸組 図をFig.1に示す。免震建物の設計クリアランスは 375mmであるが、上部建屋の擁壁および緩衝材付き擁壁 への衝突実験時には、衝突対象の擁壁面に部材を設置し、 上部建屋とのクリアランスを20mm~30mm程度とした。ま た、実験前に上部建屋南側の大走りの大部分を撤去した

(Photo2参照)。上部建屋内の什器を概ね搬出した上で, 実験時の挙動観察のためオフィス家具一式を免震建物 4Fに設置した。設置した家具をPhoto3に示す。

2.1.2 免震装置 免震装置は天然ゴム系積層ゴム 14 基および特殊鋼棒ダンパー96本である。積層ゴムの仕様 を Table 2 に,断面図を Fig. 2 に示す。積層ゴムの 1 次形状係数は 33.5, 2 次形状係数は 2.8 で,ゴムの静的 せん断弾性係数は 0.549N/mm²である。近年の一般的な天 然ゴム系積層ゴムと比較すると 2 次形状係数が小さく, せん断弾性係数は大きいが,擁壁の復元力特性および擁 壁衝突時の上部建屋の挙動を把握する上での支障は無い。 また,実験前に特殊鋼棒ダンパーは全数撤去した。

2.1.3 **擁壁** 上部建屋を衝突させる擁壁は,免震建物 の南面に位置する擁壁である(以下,南面擁壁)。擁壁は 厚さ200mm,高さ1,200mmのRC造である。擁壁の配筋は 縦筋,横筋共にD10,D13@150mmのダブル配筋である。 擁壁および基礎の断面図をFig.3に示す。上部建屋が擁 壁に衝突すると,擁壁に押されて背後地盤(埋戻し土) も動くため,本報では両者を併せて擁壁部と称する。

(a) X4 通りおよび X5 通りの軸組図 Framing Elevation at X4 and X5 Axis

Table 1 建物概要

Outline of Building				
所在地	東京都清瀬市 大林組技術研究所内			
竣工	1986年8月(2009年8月解体)			
建物規模	地上5階 地下1階			
軒高	21.85m			
延床面積	約1,600㎡			
上部建物構造	鉄筋コンクリート造			
免震装置	天然ゴム系積層ゴム 14基			
	特殊鋼棒ダンパー96本(実験時撤去)			
クリアランス	375mm(衝突実験時約25mm)			

Photo 1 免震建物外観 View of the Base-Isolated Building

Framing Elevation at Y1 and Y3 Axis

Photo 3 免震建物 4F に設置したオフィス家具 Office Furniture at 4th floor in the base-isolated building

Table 2 積層ゴムの仕様 Specification of the Laminated Rubber				
ゴム層数および層厚	4.4mm×61層=268.4mm			
鋼板層数および層厚	2.3mm×60層=138.0mm			
	22.5			

1次形状係数	33.5
2次形状係数	2.8
ゴムの静的せん断弾性係数	0.549N/mm ²
ゴムのヤング係数	1.128 N/mm ²

Fig. 2 積層ゴム断面図 (単位:mm) Section of the Laminated Rubber (Unit: mm)

Fig. 3 擁壁および基礎の断面図(単位:mm) Section of the Retaining Wall and Footing (Unit: mm)

\rightarrow Nie01020304050 \downarrow ient production (1000)ient production (10

Fig. 4 建築地盤の土質柱状図 Borehole Data of the Building Site

Table	3	実験−	一覧
List of	Ez	xperim	ents

	-		
実験名/試験名	実施内容	確認項目	実施順
免震層静的加力実験	ジャッキを用いて上部建屋に100mmの強制変位を与 える(同試験を3回実施)	積層ゴムの復元力特性	3
緩衝材静的加力実験	ジャッキを用いて上部建屋及び擁壁に設置した緩衝 材(防舷材)に,690kNの載荷荷重を与える	緩衝材(防舷材)の復元 力特性	2
擁壁部静的加力実験	ジャッキを用いて上部建屋及び擁壁に載荷荷重を与 える(荷重1180kN, 1960kNの2ケースを実施)	擁壁部(擁壁及びその背 後地盤)の復元力特性	5
自由振動実験	ジャッキを用いて上部建屋に70mmの初期変位を与 え,ジャッキを急速に除荷し自由振動を与える(同 実験を3回実施)	一次固有周期及び減衰定 数	1
緩衝材衝突実験	ジャッキを用いて上部建屋に初期変位を与え, ジャッキを急速に除荷し緩衝材を設置した擁壁へ衝 突させる(初期変位40mm,70mmの2ケースを実施)	衝突時の建屋応答	4
擁壁衝突実験	ジャッキを用いて上部建屋に初期変位を与え, ジャッキを急速に除荷し擁壁へ衝突させる(初期変 位40mm, 100mmの2ケースを実施)	衝突時の建屋応答及び擁 壁部の復元力特性	6

2.1.4 建築地盤 免震建物の建築地盤の土質柱状図 を Fig. 4 に示す。地層構造は GL-7.0m までが関東ローム 層で,N値は 10 以下,せん断波速度 Vs=143m/s である。 GL-7m 以深には武蔵野れき層があり,N値は 50以上, Vs=466m/s である。杭は PHC 杭で GL-7m のれき層で支持 している。

2.2 実施した実験

本報の主目的は,免震建物の上部建屋が擁壁に衝突し た際の擁壁の復元力特性並びに上部建屋の衝突時挙動を 明らかにし,衝突現象のシミュレーションに必要な情報 を得ることである。このため, Table 3 に示すように, 擁壁衝突実験以外に,予備実験と総称する免震層静的加 力実験,擁壁部静的加力実験,自由振動実験,上部建屋 を緩衝材を介して擁壁に衝突させる実験を実施した。本 報では予備実験の結果については概要を述べるにとどめ る。予備実験の詳細については既往報告¹¹⁾を参照され たい。

2.3 計測項目

2.3.1 荷重 静的加力実験の荷重は,北側載荷装置 (急速開放型ジャッキ)および南側載荷装置(通常型ジ

Dⁿ_{WB}(Y):上部建屋 - 擁壁上端間の Y 方向変位 (n=X1,2,4,5,7) Dⁿ_{FB}(X):免震層層間変位の X 方向変位 (n=Y,1,3) Dⁿ_{FB}(Y):免震層層間変位の Y 方向変位 (n=X1,4,7) Dⁿ_{FW0}(Y):積層ゴム底部基礎 - 擁壁下部間の Y 方向変位 (n=X1,4,7)

Fig. 6 B1F 免震層における変位計の 設置位置図(単位 mm) Arrangement of Displacement Meters in B1F (Unit: mm)

Arrangement Plan of Load Cells and Loading Devices in B1F as Isolation Layer (Unit: mm)

Fig. 5 免震層の荷重計および載荷装置の設置位置(単位:mm)

Fig. 7 上部建屋各階における加速度計の設置位置 Arrangement Plan of Accelerometers in Superstructure

①:加速度測定点(Y方向)
 ⊖:加速度測定点(X方向)
 ⊙:加速度測定点(Z方向)

ャッキ)に取り付けた荷重計で計測した。荷重計の設置 位置を Fig. 5 に示す。東側,西側に設置した通常型ジャ ッキの荷重をそれぞれ F^{SE} , F^{SW} と称する。同様に東側, 西側に設置した急速開放型ジャッキの荷重をそれぞれ F^{NE} , F^{NW} と称する。

擁壁衝突実験では、上部建屋と擁壁部との衝突荷重を 計測するため、南面擁壁の衝突位置2箇所(X1通りおよ びX7通り)にそれぞれ荷重計3台を設置した。荷重計3 台の合計値をそれぞれF^W(X1通り)、F^E(X7通り)と 称する。

2.3.2 変位 免震層に設置した変位計の位置を Fig. 6 に示す。上部建屋 - 擁壁上端間の変位,免震層層間変 位および積層ゴム下部基礎 - 擁壁下部間の変位記号をそ れぞれ D_{WB}, D_{FB}および D_{FW0}と称する。例えば D_{WB}(Y)は X1列における上部建屋 - 擁壁上部間の Y 方向変位を示す。 2.3.3 加速度 上部建屋に設置した加速度計の位置 を Fig. 7 に示す。RF および 1F の西側と東側に Y 方向の 加速度計を,北側と南側にそれぞれ X 方向, Z 方向の加 速度計を設置した (Fig. 7(a), (c))。また, 3F 床に X, Y 方向の加速度計を設置した (Fig. 7(b))。加速度記号 はAで表わし,各測定点の設置階および平面位置を加速 度記号の右肩に,測定方向を加速度記号右隣の括弧内に 示す。例えば*A^{RE}(Y)*は, RF 東側に設置した測定点での Y 方向加速度を示す。

2.4 予備実験の概要

2.4.1 免震層静的加力実験 Fig. 5 に示す北側載荷 装置を用いて上部建屋に 100mm の強制変位を与え,免震 層の水平剛性を確認した。

2.4.2 緩衝材静的加力実験 緩衝材衝突実験(2.4.4 項で後述)に使用する緩衝材の復元力特性を確認するため,静的加力実験を行った。緩衝材には,主に船舶が岸壁に接岸する際の衝撃を和らげるため岸壁に設置する防舷材を用いた。緩衝材および緩衝材設置用の鉄骨梁の幅は約1.6mで,衝突する上部建屋の積層ゴム上部基礎の幅1.8m以下の長さとした。南側擁壁のX1~X7通りに各1基ずつ,計7基の緩衝材を設置し,上部建屋を介して,南側載荷装置により緩衝材を加力し,緩衝材の水平剛性を確認した。

2.4.3 **擁壁部静的加力実験** 擁壁部静的加力実験で は、南面擁壁の X4 位置(Fig. 5 参照) にクリアランス を縮小するための剛部材(鉄骨梁および鉄板)を挿入し、 免震層上部建屋を介して南側載荷装置で擁壁部を加力し 擁壁部の復元力特性を確認した。加力実験は南側載荷装

Fig. 8 免震建物の振動実験の概要図 Schematic Illustrations of Vibration Tests using Base-Isolated Building

置の総ジャッキ荷重 ($F^{SE} + F^{SW}$) 1, 180kN と 1, 960kN の 2 ケースを実施した。

2.4.4 自由振動実験 免震層に設置した急速開放型 ジャッキを用いて上部建屋に初期変位70mmを与え,ジャ ッキの油圧を急速に開放することで自由振動を発生させ, 免震一次固有周期および減衰定数等を確認した。

2.4.5 緩衝材衝突実験 緩衝材衝突実験では、7 基の 緩衝材を設置した南面擁壁に、上部建屋を衝突させた。 なお、2.4.3 項の擁壁部静的加力実験の実施により、擁 壁に損傷が発生することが予想されたため、擁壁部静的 加力実験の前に緩衝材衝突実験を実施した。

2.5 擁壁衝突実験の概要

衝突実験の概要図をFig. 8 に示す。また,載荷装置お よび荷重計の設置状況をPhoto 4 に示す。免震建物の設 計クリアランスは 375mm であるが,擁壁衝突実験では使 用するジャッキのストローク範囲内で,可能な限り衝突 時の速度を大きくするため,擁壁に剛部材を設置し,ク リアランスを 20mm~30mm 程度とした。

擁壁衝突実験では,南面擁壁の2箇所(X1通り,X7 通り)に設置した剛部材(鉄骨梁)に荷重計を取付け, この剛部材と荷重計を介して,上部建屋の基礎を擁壁に 衝突させた。擁壁衝突実験の状況をPhoto5に示す。

擁壁衝突実験は擁壁部静的加力実験後に実施したが, 加力実験による擁壁の変形は X4 通り付近のみの局所的

Photo 4 載荷装置および荷重計 A Loading Device and a Load Cell

Photo 5 南面擁壁 X1 通りの擁壁 衝突実験状況(初期変位 100mm) The Situation of the Retaining Wall at X1 Axis on Experiments of Collision (Initial Displacement: 100mm)

Fig. 10 自由振動実験での変位波形および 加速度波形(初期変位 70mm) Time Histories of Displacement and Acceleration on Free Vibration Tests (Initial Displacement:70mm)

な変形であったため, 擁壁衝突実験前に X1 および X7 通り付近の擁壁部への影響は無いと判断した。

3. 実験結果

3.1 予備実験

3.1.1 免震層静的加力実験 免震層静的加力実験か ら得た免震層の復元力特性を基に,免震層の水平剛性を 最大荷重点における割線剛性で評価したところ, 13.1kN/mm(3回の実験の平均値)であった。

3.1.2 緩衝材静的加力実験 緩衝材静的加力実験から得た緩衝材の復元力特性を基に,緩衝材7基の水平剛性を最大荷重点における割線剛性で評価したところ, 43.1kN/mmであった。

3.1.3 擁壁部静的加力実験 擁壁部の復元力特性を Fig. 9 に示す。静的加力実験の各荷重ケースの値は免震 層の復元力を含めた値である。擁壁部の復元力 *F*^c およ び南面擁壁 X4 位置での変位 *D*^{X4}_{FW1}(*Y*) を式(1),式(2) より 求めている。

$$F^{C} = F^{SW} + F^{SE} - F^{B} \tag{1}$$

$$D_{FW1}^{X_n}(Y) = D_{FB}^{X_n}(Y) - C_m$$
(2)

(F^B:免震層の水平剛性を 13.1kN/mm とした際の復元力) (C_m:擁壁部静的加力実験時のクリアランス)

擁壁部1箇所の水平剛性を総ジャッキ荷重1,180kNケ

Time Histories of Displacement and Acceleration on Experiments of Collision to Retaining Wall with Shock Absorber (Initial Displacement:40mm)

Fig. 13 擁壁衝突実験結果(初期変位 40mm) Results of Experiments of Collision to Retaining Wall (Initial Displacement:40mm)

ースの最大荷重点における割線剛性で評価したところ 36.4kN/mm であった。擁壁部の復元力 - 変位関係は,復 元力 250kN 程度までは線形であるが,250kN 以上では剛 性が低下する弾塑性性状を示す。なお C_m は,上部建屋が 擁壁と接触した際の X4 通りでの免震層層間変位量とし, 荷重 $F^{SE} + F^{SW} \ge D_{FB}^{X4}(Y)$ の荷重 - 変位関係から 62mm と した。

また, 擁壁部静的加力実験後には, 擁壁部脚部のひ び割れおよび擁壁 - 背後地盤間に間隙の発生を確認 した。

3.1.4 自由振動実験 自由振動実験における $D_{FB}^{X4}(Y)$ の時刻歴変位波形および、 $A^{IW}(Y) \geq A^{IE}(Y)$ の時刻歴加速度波形をFig. 10 に示す。ジャッキ除荷後~約 50 秒では、 $A^{IW}(Y) \geq A^{IE}(Y)$ の加速度振幅差がやや大きく、上部建屋にねじれ振動が発生していることが分かる。 $D_{FB}^{X4}(Y)$ より、変位振幅 y_n が 20mm 以上の範囲で免 震建物の一次固有周期を求めると、2.71 秒であった。さらに、式(3)を用いて対数減衰率 $\ln d_n$ を求めると、 y_n が 20mm 以上での減衰定数hの平均は 1.83%であった。

$$\ln d_n = \ln y_n / \ln y_{n+1} = 2\pi h \sqrt{1 - h^2}$$
(3)

Fig. 14 擁壁衝突実験結果(初期変位100mm) Results of Experiments of Collision to Retaining Wall (Initial Displacement:100mm)

 $(y_n: D_{FB}^{X4}(Y) \mathcal{O} n 回目の振幅)$

また, Fig. 10 の加速度波形上の約 25 秒に現れる負方 向のピークは,急速開放ジャッキ除荷時に生じた加速度 であり,以降の全振動実験の加速度波形上でも共通して 現れる。

3.1.5 緩衝材衝突実験 初期変位 40mm, 70mm の各ケースでの緩衝材衝突実験結果をそれぞれ Fig. 11, Fig. 12 に示す。初期変位 40mm のケースでは*A^{IW}(Y)*, *A^{IE}(Y)* で各 5 回, 緩衝材への衝突によるピークが見られる。緩 衝材衝突による 1F の最大加速度は 33cm/s²である。

初期変位 70mm のケースでは、 A^{IW}(Y) で 7 回、 A^{IE}(Y) で 6 回、緩衝材への衝突によるピークが見られる。緩衝 材衝突による 1F の Y 方向の最大加速度は 63 cm/s² である。 A^{IW}(Y) の加速度波形より、緩衝材衝突時の速度を求める と 7.8 cm/s である。

緩衝材衝突実験後, 擁壁にひび割れ等の損傷が無いこ とおよび, 擁壁 - 背後地盤間に間隙が発生していないこ とを確認した。

Photo 6 南面擁壁 X1 通りの擁壁衝 突実験状況(上部建屋が衝突した状態) The Situation of the Superstructure Collided with the Retaining Wall at Center-

X1 Axis on Experiments

Photo 7 擁壁衝突実験後の柱脚ひび割れ (位置: X3 - Y3 の 1F 柱脚) The Crack at the Column Base Found after Experiments of Collisions to the Retaining Wall (Column at Cross Point of Center Y3 and X3 Axis)

Photo 8 擁壁衝突実験後の南面 擁壁の西側隅角部でのひび割れ The Crack at the Retaining Wall that is Found after Experiments of Collisions to the Retaining Wall

Fig. 15 擁壁衝突時の建屋および 擁壁挙動(初期変位100mm)

Enlarged Time History Wave Forms of Experiments of Collisions to the Retaining Wall (Initial Displacement:100mm)

3.2 擁壁衝突実験

初期変位 40mm, 100mm の各ケースの擁壁衝突実験結果 をそれぞれ Fig. 13, Fig. 14 に示す。さらに初期変位 100mm のケースにおける衝突 1~3回目までの時刻歴波形 を Fig. 15 に示す。また,上部建屋の擁壁衝突時の状況 を Photo 6 に示す。Fig. 13 より,初期変位 40mm のケー スでは $A^{IW}(Y)$ で 1回, $A^{IE}(Y)$ で 2回それぞれ衝突によ るピークが見られる。衝突時の 1F での最大加速度は 86cm/s²,擁壁部の最大変位は 5.2mm である。Fig. 14 よ り,初期変位 100mm のケースでは $A^{IW}(Y)$ で 6回, $A^{IE}(Y)$ で 7回それぞれ衝突によるピークが見られる。擁壁衝突

Fig. 16 衝突実験における擁壁部復元力特性 Hysteresis Characteristics of the Retaining Wall and including the soil behind on Experiments of Collisions to the Retaining Wall

時の1FにおけるY方向の最大加速度は211cm/s²である。 $A^{IW}(Y)$ の加速度波形より,衝突時の速度を求めると 10.4cm/sである。擁壁部の最大変位は25.9mmであり, 擁壁に作用する荷重 F^{W} および F^{E} の最大値はそれぞれ 648kN,505kNである。Fig. 15より,初回の衝突時には F^{W} と F^{E} の荷重波形の立上り時刻に差があり, F^{W} の衝突時 刻が約0.1秒早い。2回目の衝突時には,逆に F^{E} の衝突 時刻が約0.1秒早く,上部建屋がねじれ振動を伴って衝 突していることが分かる。

RFの鉛直方向の加速度波形 A^{RN}(Z) と A^{RS}(Z) は除荷直後並びに擁壁衝突後の波形が逆位相となっており,上部

建屋にロッキングが発生していると考えられる。Y 方向 の加速度波形においても,除荷直後並びに擁壁衝突後に, 免震建物の1次固有周期よりも短い周期の振動が励起さ れており,この短周期の振動もロッキングの発生による ものと考えられる。

Fig. 16 に示すように、X1 通り、X7 通りの擁壁部復元 力 - 変位関係は 250kN~300kN 程度までほぼ線形関係に あるが、この復元力を超えると剛性が低下し、弾塑性性 状を示す。初期変位 40mm の衝突実験ケースにおける最大 荷重点での割線剛性を求めると、X1 通りでは約 50.4kN/mm, X7 通りでは 54.2kN/mm である。250kN 以上の 荷重で擁壁部が塑性化する現象については、3.1.3 項の 擁壁部静的加力実験結果と同様であるが、線形領域にお ける擁壁部の剛性は, 擁壁衝突実験結果の方が約 40%大 きい。X1 通りと X7 通りの南面擁壁は、南面擁壁と直交 する東西面の擁壁に近いため、X4 通り(中央)の南面擁 壁と比較して水平剛性が大きいと考えられる。また、初 期変位 100mm の衝突実験ケースでは1回目の衝突により 擁壁部に 6mm~7mm の残留変位が生じ, 2 回目以降の衝突 ではこの残留変位が生じた状態のまま、衝突を繰り返し ている。

擁壁衝突実験後に X3 通り - Y1 通り, X3 通り - Y3 通り および X4 通り - Y3 通りの各位置の 1F 柱脚においてひび 割れを確認した (Photo 7)。擁壁においても,擁壁と背 後地盤の間に間隙の発生や,擁壁脚部近傍にひび割れを 確認した (Photo 8)。また実験映像から,擁壁衝突実験 時に,免震建物 4F に設置したオフィス家具 (Photo 3 参 照) に移動や転倒が生じないことを確認した。

4. まとめ

本報では、大林組技術研究所内の実大免震建物を用い て実施した擁壁衝突実験の概要および結果について報告 した。また擁壁衝突実験前に実施した予備実験の結果に ついても報告した。擁壁衝突実験および予備実験より明 らかとなった事項は以下の通りである。

- 免震建物はねじれを伴って擁壁に衝突し,擁壁衝突 直後にロッキング振動が励起された。
- 2) 衝突により擁壁の局部的な損傷と変形の集中,擁壁の残留変形や擁壁-背後地盤間の間隙を確認するとともに、実大免震建物の擁壁および背後地盤(擁壁部)の復元力特性を把握することができた。
- 3) 上部建屋では擁壁衝突時に 200gal 以上の加速度が 生じたが、上部建屋内に設置したオフィス家具の移 動や転倒は生じなかった。

今後は本報の擁壁衝突実験結果のシミュレーション解 析をおこない,重要な解析諸元である擁壁部をモデル化 することを課題としたい。

謝 辞

擁壁衝突実験の実施並びに本報告の作成にあたっては 京都大学大学院の林康裕教授をはじめ,同大学の多幾山 法子助教,博士課程前期の佐藤浩太郎氏,鈴木恭平氏お よび学部生の小巻潤平氏に多大なご協力を頂いた。記し て謝意を表する。

参考文献

- 柏尚稔,他:大地震下における免震建物の応答と損 傷特性(その1:実験と解析モデル),日本建築学会 大会学術講演梗概集(北海道),B-2,pp.393~394, (2004)
- 梶井丈史,他:震源近傍における衝突を考慮した免 震構造物の弾塑性応答解析,日本建築学会大会学術 講演梗概集(東北),B-2,pp.527~528,(2000)
- Matsagar, Vasant A., et .al:Seismic response of base-Isolated structures during impact with adjacent structures, Engineering Structures, 25, pp. 1311-1323, (2003)
- 4) 北村春幸,他:長周期地震動による既存免震建物の 耐震性能評価,日本建築学会技術報告集,第22号, pp.127~132,(2005)
- 高山峯夫,他:過大地震動下における免震建物の応 答特性,日本建築学会九州支部研究報告集.1.構造系, 第46号,pp.345~348,(2007)
- 6) 岡田直子,他:長周期成分を有する巨大地震動に対する免震構造の安全性(その1.上部構造が脆性破壊する免震建物の挙動),日本建築学会大会学術講演梗概集(九州),B-2,pp.937~938,(2007)
- 竹中康雄,他:平成15年十勝沖地震における釧路市 内に建つ免震建物の地震観測,MENSHIN, NO. 43, pp. 31 ~35,(2004)
- 8) 久保田宗穂,他:免震構造物(郵政省WESTビル)の兵 庫県南部地震における吸収エネルギーの算定方法に ついての考察,日本建築学会大会学術講演梗概集(近 畿), B-2, pp. 795~796,(1996)
- 9) 河本慎一郎,他:平成16年(2004年)新潟県中越沖 地震における小千谷市内の免震建物の挙動 その3 観測記録を用いた解析的検証,日本建築学会大会学 術講演梗概集(近畿),B-2,pp.657~658,(2005)
- Earthquake Engineering Research Institute (EERI):Earthquake Spectra, vol. 2(Reconnaissance Report, Northridge earthquake of January 17 1994), pp. 243-251, (1996)
- 佐野剛志,他:実大免震建物の擁壁への衝突実験(その1 静的加力試験),日本建築学会大会学術講演梗 概集(北陸), B-2, pp. 427~428, (2010)