- ◇技術紹介 Technical Report-

世界初の直立浮上式防波堤 New Tsunami Disaster Prevention System: "Vertically Telescopic Breakwater(VTB)" for Ports and Harbors

1. はじめに

我が国は大規模地震に起因する津波の被害を幾度とな く被ってきており,2011年3月11日に発生した我が国 観測史上最大のマグニチュード9.0の東北地方太平洋沖 地震による大津波では,東北地方太平洋側沿岸部を中心 として未曾有の被害を受けた。一方,海外においても, 2004年12月のスマトラ島沖地震において,インド洋沿 岸諸国で約30万人の人命が失われたことは記憶に新し い。今後も,南海トラフを震源とする大規模地震による 津波により多くの沿岸域で人命・財産などに大きな被害 をもたらすことが危惧されている。

津波の被害を低減するためのハード対策の一つとして, 防波堤の設置があげられる。しかし,港の航路部におい ては船舶航行の確保のために防波堤を設置することがで きず,当該部分から侵入する津波等のエネルギーを遮 断・低減することは困難であった。

そこで,船舶航行を確保しつつ津波・高波来襲時など 非常時にのみ防波機能を発揮する「直立浮上式防波堤」 を開発した。常時は鋼管を航路部等の海底面下に沈設し, 津波・高波来襲時など非常時にのみ上部鋼管を浮上させ て港内施設等を守るという全く新しい概念の可動式防波 堤である(Fig. 1参照)。

本報においては,概要を示した後,解決した技術的課 題およびその検証内容について示す。

2. 構造概要と浮上機構

本防波堤は Fig. 2 に示すように、上部鋼管が下部鋼管 内側に挿入された鞘管構造となっており、浮上は上部鋼 管内への圧縮空気の送気、沈降は排気バルブの開放によ り遠隔操作で行われる。延長方向には継手を設置してい るため隣り合う鋼管の間に若干の隙間を有する。また、 小林 真 Makoto Kobayashi ^(本社土木本部生産技術本部) 武田 篤史 Atsushi Takeda

浮上後の水平力(波力等)の伝達は上・下部鋼管がオーバ ーラップした部分で行われる。

3. 解決した技術課題

本工法の開発においては,確実な浮上・降下を担保し, 50年以上の長期間にわたり機能を維持することを目標 としたが,以下のような技術的課題を有していた。

- 1) 津波・高波に対する遮蔽(防御)効果の確認
- 2) 上・下部鋼管の製作精度(真円度)や下部鋼管の鉛直 打設精度の確認
- 3) 波浪中の浮上・沈降確認
- 4) 長期間格納(沈設)中の生物付着状況,鋼製部材の腐

1g. 2 直立浮上式防波堤の構造模式区 Structural Configuration of VTB

Fig. 1 直立浮上式防波堤のイメージ図 Operation System of VTB

食耐久性等の確認

- 5) 排気バルブ等の遠隔操作システムの信頼性確認
- 6) 上部鋼管から下部鋼管への水平力伝達機構の確認

本報では,1)の課題を解決するために行った大規模水 理模型実験,2)~6)の課題を解決するために行った現地 実証実験,6)の課題を解決するために行った数値解析に ついて説明する。

4. 大規模水理模型実験

津波・高波に対する遮蔽(防御)効果を確認するために, 大規模水理模型実験を行った。

実験は、(独)港湾空港技術研究所の大規模波動地盤総 合水路(長さ184m,深さ12m,幅3.5m)に縮尺1/5の防波 堤模型を設置して行った。防波堤模型は,直径0.4mの 鋼管7本を水路幅方向に固定して設置した。入力は,津 波のほか風波を作用させた。Photo1に実験状況を示す。

実験の結果,透過率は風波に対し0.35~0.4,津波に対しては0.25~0.3 であり,十分な遮蔽効果があることを確認した。

また,合わせて,上部鋼管の応答特性,下部鋼管と地 盤との相互作用,水底部の洗掘影響等についても計測・ 観察を行い,実構造物の設計に必要な知見を得ることが できた。

Photo 1 大規模水理模型実験 Large Scaled Hydraulic Model Experiment

Photo 2 現地実証試験 Field Tests

5. 現地実証試験

5.1 試験概要

3章に示す2)~5)の課題を解決することを目的として, 平成18年9月から平成21年5月まで静岡県沼津港の波 除堤ケーソン前面において,現地実証実験を行った。

試験体は,上部鋼管(φ1.422m L=14.75m)および下部鋼 管(φ1.600m L=16.75m)を1組用いて行った。また,その 両側には,海底に固定した鋼管(φ1.422m)2本を建て込ん だ。

試験項目は(1)鋼管製作・打設精度の確認,(2)可動(浮 上・沈降)試験,(3)水平載荷試験,(4)波浪応答試験,(5) 付着生物および鋼材腐食等の調査,(6)制御システム作動 試験の6項目とした。

5.2 試験結果

 (1) 鋼管製作・打設精度 上部鋼管は、肉厚 t=14 ~50mm の4 種類の鋼管を溶接接合して製作した。外径は1422±3mm,鋼管中心線のズレは 0mm であり、十分な 真円度を確保することができた。

下部鋼管の打設精度は、1/300の傾斜に抑えることが でき、上部鋼管浮上時における隣接鋼管の接触などに対 して十分な精度が確認された。

(2) 可動(浮上・沈降)試験 蓄圧タンクから送気し、および排気バルブからの排気により、浮上および沈降の作動試験を行った。

浮上に関しては、浮上シミュレーションとよく合致しており、数分程度での浮上完了が可能であることが確認できた(Fig. 3)。

また、浮上・沈降を延べ100回以上繰り返したが、ト ラブルは無く、送気システムの信頼性が実証された。

(3) 水平載荷試験 浮上させた上部鋼管に対し, 陸側に隣接する波除堤ケーソンを反力として水平載荷 試験を行った。

試験の結果,上下部鋼管オーバーラップ部において,

Fig. 3 浮上シミュレーションと実測値の比較 Raising Test Results Compared to Analytical Results

上・下端で2点支持され、下部鋼管を介して地盤に力が 伝達されるなど、耐荷機構を明らかにすることができた。

(4) 波浪応答試験 波浪に対する応答特性を明ら かにするため,上部鋼管を約2週間浮上させたままの状 態にして,波浪時における加速度を計測した(Photo 3)。

試験の結果,波浪に対する応答特性が明らかになり, 上部鋼管を浮体とする動揺解析により応答を予測できる ことが確認された。ただし,上部鋼管と下部鋼管が接触 する際に衝撃的な加速度が生じることがわかり,高波対 策として本防波堤を利用する場合は衝撃緩和対策を設置 する必要性が示唆された。

(5) 付着生物および鋼材腐食等の調査 沈設から 約1年経過した平成19年11月中旬に上部鋼管を再浮上 させたが,鋼管側面には付着生物や有意な鋼材腐食は確 認されなかった。これは,下部鋼管内部の溶存酸素量 (DO)は,海底面下ではDO<2ppmであり,上部鋼管が光 量や溶存酸素の極めて少ない下部鋼管内に格納されて いたためと考えられる。

(6) 制御システムの作動試験 陸上の機械室と上 部鋼管内の制御システムの通信・電力供給を可能とする 非接触カプラ,無線通信等の制御機器の作動試験を平成 21年に実施し,性能を検証した。

6. 上下部鋼管オーバーラップ部の数値解析

本構造物は、上・下部鋼管のオーバーラップ部が構造 上の弱点となっており、十分な補強が必要となる。Fig.4 に補強部の構造を示す。上部鋼管内部には下部鋼管と接 触する上下2箇所に環状補剛材(リングプレート)を取り 付け剛性を増している。一方、下部鋼管は、上端部に外 ダイヤフラム、下端部には補強板を取り付ける。

補強の諸元は,道路橋示方書・同解説 鋼橋編および 鋼管構造設計施工指針・同解説に示される方法で決定し たが,形状が複雑であるため,非線形3次元 FEM 解析 により安全性を確認した。

解析モデルはシェル要素およびコンタクトペア要素 (剥離接触要素)により構成し、津波外力の作用重心に水 平力を単調載荷させた。モデルの妥当性については、5

Photo 3 波浪中の加速度計測 Measurement of Acceleration of Pile Top

章に示す水平載荷試験における挙動と比較することで確認した。

解析結果の例を Fig. 5 に示す。解析の結果, 概略設計 は既往の指針により可能であることや, 終局限界状態を 考慮すべき詳細設計においては非線形 FEM 解析が有用 であることが確認できた。

7. 性能向上やコスト削減の方策

本工法は、要求性能に応じて、コスト削減や性能の向 上を見込める方法が選択できる。以下に、その一部とし て、副管による遮蔽性能向上方策と3本連結構造による コストダウン方策について示す。

7.1 副管による開口率低減

本工法は鋼管の打設のため,隣接する鋼管間に開口率 5%程度のスリットを有するが,この部分からわずかに水 塊が背後へ流入する。港内の水域面積が小さい場合など では水位抑制の要求性能を満足できない場合も生じうる。 このような場合には,Fig.6に示す炭素繊維強化プラス チック(CFRP)製の副管と称する部材をスリット間に挟 み込み実質的な開口率を低減させて対応することが可能 である。平常時においては,副管も上部鋼管と同様に地

Fig. 4 オーバーラップ部補強構造 Reinforcement of Overlapped Part

(上部環状補剛材周辺の応力状態) Stresses of Overlapped Part Calculated by FEA

Arrangement of Sub-Tubes

盤中の下部鋼管内に格納させる仕様としている。

7.2 3本連結モデルによる送気設備低減

浮上に要する時間を比較的長くできる場合は、3本の 上部鋼管の天端を鋼製連結桁で連結し、中央の鋼管に のみ送気することで3本を同時に浮上させることが可 能である。この場合、送気管の数量を1/3に減らすこと ができるため、コスト低減を図ることができる(Fig. 7)。

8. まとめ

直立浮上式防波堤の構造および性能検証の概要を紹 介した。波浪防御効果,施工性,浮上・沈降システム の性能及び構造特性等はこれまでの一連の試験等で実 証・確立できた。

本防波堤は、南海・東南海地震発生時に大きな津波 被害が想定されている和歌山下津港において本体工の 一部となる試験工事が始まっており、本体の一部区間 が 2013 年 2 月に竣工予定である。その後、2019 年まで

Fig. 7 3本連結構造 Triad Structure

に航路部全長 230m が本防波堤により施工される予定 である。本地区は和歌山県の主幹産業が集積しており, 住民,企業から早期の津波対策が熱望されてきた経緯 がある。なお,本防波堤は国交省の約2年間にわたる 検討委員会での審議を経て和歌山市下津港海南地区で 津波防災施設として工法選定されている。

適用範囲の拡大と更なる信頼性向上を目指して,設計面では 5~10 分という短時間で津波が到達する港湾 への対応及び施設全体のコストダウン化,運用管理面 では航行船舶の安全監視や運用方法の仕組みの改善に 取り組んでいく所存である。

謝辞

本工法は当社が幹事会社となり,(独)港湾空港技術研 究所,新日鉄エンジニアリング(株),東亜建設工業(株), 三菱重工鉄構エンジニアリング(株)の 5 者で共同開発 した技術である。ここに記し,関係者各位に謝意を表 する。