高フライアッシュ含有シリカフュームセメントの長期のpH低下予測

 人見尚田口信子

 竹田宣典入矢桂史郎 (本社技術本部)

Prediction of Long term pH Reduction of High fly-ash-content Silica Fume Cement

Takashi HitomiNobuko TaguchiNobufumi TakedaKeishiro Iriya

Abstract

To establish a conceptual design of high-level radio active waste depositories such that they do not have any adverse influence on the environment. Long-term immersion examinations ware performed to estimate the time required for the pH of the leached water solution from concrete to reduce below 11. Further, a 2600-day immersion test of high fly-ash-content silica-fume cement (HFSC) was performed to investigate its hardening, where the water-binder ratio (W/B) and immersion temperature were changed. The test results showed that there was little difference in the mineral composition of the hardened cement samples. Further, formulas were developed for estimating the time required for the pH reduction of the leaching water solution of the hardened HFSC at each W/B. As a result, it was found that for an immersion temperature of 20°C at W/B of=30%, 88.6 years were required for the pH to drop below 11.0. Further, it was found that with a 10°C increase in immersion temperature, the time period reduced to half, this period could be largely shortened by the environment.

概 要

高レベル放射性廃棄物処分場の設計においては、ベントナイトを始めとする人工バリアとセメント系材料が共存することが検討されている。コンクリートからの浸出液のpHが人工バリヤに影響のない程度とされる、11.0を下回る期間を、長期の浸漬試験の結果をもとに予測した。高フライアッシュ含有シリカフュームセメント(HFSC)を対象とし、そのセメント硬化体について水ー結合材比と浸漬温度を変えた2600日間の浸漬を行った。分析結果より、温度を変化させてもセメント硬化体の水和物組成に大きな変化のない知見を得た。これより、温度の影響を有効材齢で補正することで、水粉体比(W/B)ごとのHFSC硬化体からの浸漬水のpH低下の予測式を導いた。その結果、W/B=30%で浸漬温度20℃では、pHが11.0を下回るのに88.6年の期間を要するが、浸漬温度が10℃上昇するごとにその期間が半減し、高い温度環境によって廃棄物処分場の閉鎖までの期間を短縮できる可能性を示した。

1. はじめに

高レベル放射性廃棄物処分場は 300m 以深の大深度地 下に建設が計画されている。ここでは止水性を有する粘 土鉱物であるベントナイトを中心とした人工バリアシス テムを構築することにより,長期間にわたり廃棄体と周 辺地下水環境との接触を極力避けるように設計されてい る。また,処分場坑道の覆工にコンクリートの使用が検 討されている¹⁾。

処分場環境におけるコンクリートは、長期間にわたり 周囲の地下水に接触することになる。コンクリートに普 通ポルトランドセメント(以下, OPC)を用いた場合、OPC の主成分であるカルシウム(以下, Ca)イオンが地下水に 溶出し、地下水は高いアルカリ性を示す。高いアルカリ 性となった地下水は、特に pH が 11.0 を超える場合、人 エバリアを構成するベントナイトが変質し、その止水性 が大きく低下する²⁾ことや、花崗岩等より構成される周 辺岩盤に作用し,強度が低下することが懸念されている。

コンクリートから溶出する Ca イオンは、セメント硬 化体に含まれる可溶性の水酸化カルシウム(Calcium Hydrate: CH) やカルシウム・シリカモル比(以下, Ca/Si モル比)の高いカルシウムシリケート水和物(以下, C-S-H)に由来すると考えられている。筆者らは、セメン ト硬化体からの浸出水の Ca イオン量を低下させる方法 として、高フライアッシュ含有シリカフュームセメント (Highly Fly-ash containing Silica-fume Cement: HFSC)の 研究を行っている³⁾。HFSCは、フライアッシュ(以下, FA)やシリカフューム(以下, SF)などのポゾラン材料で OPC の 50%以上を置換したセメントである。HFSCは、 セメント硬化体中の CH をポゾラン反応により Ca/Si モ ル比の小さい C-S-H に変化させることを期待している。 このため、打設後の HFSC に触れた地下水の pH は長期 的にポゾラン反応に伴い低くなると考えられる^{4),5)}が, その期間が長期に及ぶと放射性廃棄物処分場の概念設計 にも影響を及ぼすと考えられる。

本報では、HFSC のセメント硬化体について、水結合 材比(W/B)および温度を変えて 2600 日間の浸漬試験を行 い、その分析結果から、HFSC 硬化体の浸漬水の pH が人 エバリアに影響のないとされる、11.0 を下回るまでの期 間の予測を試みた。

2. 実験方法

2.1 使用材料および配合

使用材料を Table 1 に示す。HFSCは,重量比でOPC が4割,SFが2割およびFAが4割とした混合セメントで,HFSC424と称する⁵⁾。本研究では,供試体をセメント硬 化体とし,W/Bをパラメータとして試験を行った。W/B が50%以上の供試体には,石灰石微粉末(以下,LP)を添 加し,ブリーディング抑制することで,供試体の均質性 を確保した。W/B=30%以外の供試体では,結合材にLP を加えることで水粉体比(以下,W/P)を40%とした。供試 体の配合を Table 2 に示す。供試体はW/B=30%~90%の 7種類とし,減水剤は用いていない。

2.2 供試体の作製と養生

供試体は、混練後、 φ 50×H100mmの円筒型枠に打設し、 24時間の封かん養生を行った後に脱型し、材齢28日まで 標準養生を行った。その後、供試体を厚さ10mmの円盤 状に切断し、20のイオン交換水で満たした容器に、10枚 を入れて密封した。それぞれの重量割合である液固比は 5:1とした。観察用の供試体の取り出しによる供試体容積 の減少に伴い、イオン交換水は液固比を5:1合わせるよう に量を減じた。W/Bおよび20℃~50℃の温度ごとの組み 合わせの28本を材齢2600日(7.1年)の期間まで浸漬した。 なお、容器の空間部分は炭酸化防止のためアルゴンガス で満たした。

2.3 分析方法

所定の期間まで浸漬を行った供試体に対し, pHの測定, 透過型電子顕微鏡(Transmission Electron Microscope: TEM)観察およびX線回折分析を行った。試験の流れを Fig. 1に示す。供試体は、W/Bおよび温度ごとに1枚ずつ 円盤状供試体を取り出し、24時間の気中乾燥の後、クラ ッシャーで粗粉砕した後にミルで100μm以下に微粉砕 したものを分析試料とした。

2.3.1 供試体浸漬液のpH セメント硬化体中の水和 物からの浸出水のpHを測定した。分析試料を,液固比が 5:1 となるようにイオン交換水に浸漬し,容器内をアル ゴンガスでパージし,往復振とう機で2日間撹拌し,平衡 に達した状態のイオン交換水のpHを測定した。pH測定に

Table 1 使用材料

Materials				
略記	材料名	密度 (g/cm ³)	比表面積 (cm ³ /g)	備考
OPC	普通ポルトランドセメ ント	3.16	3290	太平洋セメ ント製
FA	フライアッシュ	2.25	4070	能代発電所
SF	シリカフューム	2.22	20000	ノルウエー 産
LP	石灰石微粉末	2.71	4500	秩父産

Table 2 供試体の配合

Mix Proportion of Samples

1.0		â â						
		W/D	W/D	単位量(kg/m ³)				
	NT	W/B	W/P	117	ODC	CE	Π.	TD
	NO.	(%)	(%)	W	OPC	SF	FA	LP
	1	30	30	432	576	288	576	0
	2	40		503	503	252	503	0
	3	50		507	406	202	406	254
	4	60		509	340	169	340	425
	5	70		510	292	145	292	548
	6	80		511	256	128	256	640
	7	90	40	512	228	114	228	712

Fig. 1 分析の流れ Flow of Analysis

Table 3 X線回折に用いた供試体

Samples for X-ray Diffraction Analysis

W/B(%)	浸漬温度(℃)			
W/D(70)	20	30	40	50
30	0			0
50	0	0	0	0
70	0			0
90	0			0

は、ガラス電極法を用いた。測定時期は、材齢で3日,7 日,14日,21日,28日,56日,84日,91日,120日,200 日とし,それ以降はほぼ半年間隔とした。28日より若材 齢においては標準養生を行った供試体から測定試料を採 取した。

2.3.2 Ca/Siモル比 材齢200日および1276日(およそ 3.5年)における試料をプロパノールに漬け超音波分散さ

Fig. 2 浸漬温度20℃の場合のpHの経時変化 Temporal Change of pH in Case of 20 Degrees Celsius

Fig. 3 浸漬温度50℃の場合のpHの経時変化 Temporal Change of pH in Case of 50 Degrees Celsius

せ、カーボン支持膜付きCuメッシュに載せて、TEMを用 い、繊維状のC-S-Hの結晶を確認した。その後、C-S-Hに ついてTEMに付属のエネルギー分散型X線分析装置 (Energy Dispersive x-ray Spectroscopy: EDS)による元素分 析を行い、C-S-Hに含まれるカルシウム(以下、Ca)とケイ 素(以下、Si)の元素割合を求め、Ca/Siモル比を算出した。 EDSの点分析の測定値の100 nm角の範囲の平均値として 元素割合を取得した。後述するpHの測定結果に基づき、 最も反応の低い供試体は、W/B=30%の20℃浸漬、最も反 応の進んだ供試体はW/B=90%の50℃浸漬とみなし、これ を観察対象とした。加えてその中間に位置する供試体と して、W/B=50%の30℃浸漬とW/B=70%の40℃浸漬を加 え、これらの4種を分析対象とした。

2.3.3 X線回折による供試体の水和物構成の測定 材 齢2600日(およそ7.1年に)おける分析試料に対しX線回折 を実施した。供試体は,浸漬温度が20℃および50℃のも ので,W/B=30%,50%,70%および90%のものに加え, W/B=50%で,浸漬温度が30℃および40℃のものを対象と

Fig. 4 C-S-HのTEM観察像とEDS分析域の例 (材齢1276日, W/B=70%, 40°C) Sample of Observed TEM Images and EDS Analyzed Areas of C-S-H (1276 Days, W/B=70%, 40°C)

Table 4 EDSから求めたCa/Siモル比

Ca/SI Molal Ratio Itolii EDS				
W/B	温度	Ca/Siモル比		
(%)	(°C)	200日	1276日	
30	20	0.66	0.58	
50	30	—	0.57	
70	40	—	0.48	
90	50	0.56	0.49	

した。Table 3に一覧を示す。測定に用いたX線はCuKa (λ=1.5406Å)とした。

3. 分析結果

3.1 浸漬水のpHの経時変化

Fig. 2 および Fig.3 に浸漬温度20℃および50℃の場合 の浸漬水のpHの経時変化を示す。試験開始時において 20℃浸漬のものはpHが12.5程度, 50℃浸漬のpHが12.0程 度となり、浸漬温度の高い方がpHが低くなる傾向が見ら れた。これは、高い温度により水和反応が促進されたも のと考えられる。また、いずれの浸漬温度においても浸 漬期間が200日程度まではpHの著しい低下が見られたが, その後のpHの減少幅は徐々に小さくなり, pHの低下傾向 は収束傾向を示した。また、W/Bが大きいほどpH低下の 傾向が大きい結果となった。この変化,浸漬後1276日(お よそ3.5年)経過時において、20℃浸漬の場合、すべての 供試体でpHが11.5を下回り、50℃浸漬の供試体のうち、 W/Bが60%以上の供試体はpHは11.0を下回った。このこ とは、ケイ素分を多く含むHFSCでは、 3.3節で示すよう に水酸化カルシウム(CH)をほとんど含まないことに起 因し浸漬直後のpHが低いことに加え,水和物のほとんど を占めるカルシウムシリケート化合物(C-S-H)と周囲

のシリカ質との反応が進み、Ca/Siモル比が低下したこと が示唆される。

3.2 Ca/Siモル比の測定

ポゾラン反応の進行と pH の関係を把握するために, pHを測定した粉砕供試体の一部を用いて TEM-EDS によ り C-S-H の Ca/Si モル比を求めた。

Fig.4 に材齢1276日,W/B=70%,40℃浸漬の供試体の TEM観察像を示す。C-S-Hは針状結晶を形成しこれが集 積した形として観察された。Fig.4 に図示したように, この像の中心部である100nm四方の領域に関しEDS分析 を行い,Ca/Siモル比を求めた。Table4 に,Ca/Siモル比 の算定結果を示す。いずれの供試体も,材齢1276日では 0.6以下となった。W/Bが大きいほどCa/Siモル比が低くな る傾向が見られた。また,Fig.2 およびFig.3 の結果と 併せると,Ca/Siモル比の小さい供試体はpHも低い結果を 示すこと,同じW/Bの供試体において200日における Ca/Siモル比の結果より1276日経過時の値が低いことは, ポゾラン反応の進行に伴い,供試体のCa/Siモル比の低下 に伴いpHも低下したものと考える。

3.3 X線回折による水和物構成の同定

Fig. 5 に20℃浸漬における材齢2600日の供試体のX線 回折パターンを示す。同定された鉱物として、FAに元来 含有されるMullite (ムライト), Quartz (石英), Calcite (カ ルサイト)およびアルミニウムと硫酸成分などで構成さ れる水和物であるEttringite (エトリンガイト)が認められ た。また,狭い角度範囲でのピークとは別に、緩やかな 広がりを持ったピークが15°~38°の範囲で認められた。 これは、非晶質の存在を示唆するもので、C-S-Hを構成 する水和物の多くがこれに相当するとされる。ハローの 高さは、W/Bに応じて高くなる傾向が認められ、これが TEMによるW/Bに応じた、Ca/Siモル比の違いに呼応して いると考えられた。

Fig. 6 に,浸漬温度を50℃における供試体のX線回折 パターンを示す。高温で浸漬しても、生成鉱物は20℃浸 漬と同じ結果となった。Ettringiteのピーク強度は、20℃ の結果と比べて小さく、その存在割合が小さいことを示 唆する結果となった。また、ハロー強度が浸漬温度20℃ の場合と同様に、W/Bが小さいほど大きくなる結果とな った。

Fig. 7 にW/B=50%の場合の浸漬温度を20℃, 30℃, 40℃および50℃の結果をまとめたものを示す。主要鉱物 などはほとんど変化せず, ハローの高さもほとんど同じ であった。このことは,浸漬温度20℃と50℃ではW/Bが 等しい場合,生成鉱物はほぼ等しいことを示唆している。

4. HFSCのpH低下速度に関する考察

4.1 有効材齢とpH

TEM の結果より, 浸漬温度や W/B によって C-S-H の

Fig. 5 浸漬温度20℃におけるX線回折パターン X-ray Diffraction Pattern in 20 Degree Celsius Curing

Ca/Si モル比に若干の違いが表れることが示唆されたが, X線回折の結果からは,硬化体を構成する鉱物はW/Bが 異なると,C-S-Hに違いが生じるが,浸漬温度よる違い はほとんどないことが示唆される結果となった。このこ とより、本報告における HFSC の長期浸漬試験の結果は、 W/B が同じで浸漬温度が異なる供試体の生成鉱物種は 等しいと推定される。このため、W/B に関しては pH の 挙動を統一的に扱うことができると考えられる。

HFSC の水和やそれに伴う pH 低下挙動も, 化学反応速 度を記述するアレニウスの式に則り, ある温度で浸漬し た結果を検討対象の浸漬温度に補正しその影響を材齢に 反映することができると考えた。

このような浸漬温度を考慮して補正した材齢を有効材 齢と呼び、この有効材齢を用いて、セメントの水和に伴 う自己収縮は評価が可能であることが示されている⁶。 有効材齢 t_e は、浸漬日数 t との関係として式(1)に示され る⁷⁾。

$$t_{e} = t \cdot \exp\left\{\frac{E_{a}}{R} \cdot \left(\frac{1}{T_{0}} - \frac{1}{T}\right)\right\}$$
(1)

ここで、用いた記号は以下のとおりである。

t_e: 有効材齢(日)

t:浸漬日数(日)

T₀:補正後の浸漬温度

T:実際の浸漬温度(℃)

Ea: 見かけの活性化エネルギー(kJ/mol)

R: 気体定数(8.31K/(K・mol))

このうち,活性化エネルギーを気体定数で除した E_a/R の値は,実験結果などをもとに決められ,それぞれ適用 する状況によって異なる。笠井らは E_a/R に 4000 という 値を用いた⁷⁰が,シリカフュームセメントの自己収縮に 関する寺本らの検討例⁸⁰では, E_a/R の値に 10000 という 値を用いている。本検討では E_a/R は有効材齢と pH の関 係に対するフィッティングによって最適値を求めた。

ポゾラン反応もアレニウス則に基づくと考え, pH 低下 は浸漬期間の関数として指数的な挙動になると仮定した。 このため, pH と有効材齢の自然対数値は線形の関係にな るとして、W/B ごとに、pH と t_eの関係に関して E_a/R を 4000 から 10000 まで変化させ、線形フィッテングの精度 を表す決定係数 (r²)を求めた。r²は、1 に近いほど、高 い精度のフィッテングであることを表す。

補正後の浸漬温度 20℃の, W/B ごとの $E_a/R \ge r^2$ の関係を Fig. 8 に示す。この結果, W/B=90%では特異な挙動を示すが,他の W/B に関しては r^2 が最大となる E_a/R の値は 7900 であることが分かった。

Table 4 に浸漬温度 20[°]Cの有効材齢 $t_e \ge pH$ の関係を示 す。この有効材齢を横軸にとり, pH の測定結果を縦軸と して, Table 4 の近似曲線と併せ W/B=30%の場合として Fig. 9 に, W/B=50%の場合として Fig. 10 にそれぞれ示 す。温度による傾向の違いは見られず, それぞれ良好な 線形近似が得られた。

他の浸漬温度においても,同様に r^2 の変化より E_a/R は 7900 の値が妥当であった。

Fig. 8 E_a/Rと決定係数r²の関係(浸漬温度20℃) Relations Between E_a/R and Determination Coefficient r² (20 Degree Celsius Curing)

Table 5 浸漬温度を20℃とした場合のpHと有効材齢の関係

Relations of Effective Ages and pH				
in 20 Degrees Celsius				
W/B (%)	pHと有効材齢の関係			
30	$pH = -0.168 \cdot \ln(t_e) + 12.745$			
40	$pH = -0.174 \cdot \ln(t_e) + 12.718$			
50	$pH = -0.173 \cdot \ln(t_e) + 12.698$			
60	$pH = -0.180 \cdot \ln(t_e) + 12.700$			
70	$pH = -0.179 \cdot \ln(t_e) + 12.667$			
80	$pH = -0.179 \cdot \ln(t_e) + 12.639$			
90	$pH = -0.179 \cdot \ln(t_e) + 12.601$			

Fig. 9 W/B=30%の供試体における有効材齢とpHの関係 Relations Effective Material Age and pH in Test Pieces of W/B=30%

4.2 有効材齢に基づくpH低下期間の予測

Table 5 の近似式を用いると、W/Bごとに供試体の浸 漬液のpHが11.0を下回る時期を予測することができる。 補正後の浸漬温度T₀を変更することによって、浸漬温度 を30℃、40℃および50℃に設定した場合も同様にpHと有 効材齢の関係式を求め、pHが11.0を下回る時間を浸漬温 度とW/Bごとに求めた。結果をFig. 11 に示す。

浸漬温度20℃の場合,W/B=30%ではpHが11.0を下回るのに88.6年を要し,W/B=40%では53.2年となった。浸漬 温度30℃の場合,pHが11.0を下回る期間は浸漬温度20℃ の場合の半分以下となった。

浸漬温度40℃,50℃の場合も同様に,浸漬温度が10℃ 上昇するに伴い,pH低下期間はそれぞれ半分以下になる ことが分かった。高レベル放射性廃棄物処分は,300m以 深の地中処分が検討されている。地温勾配により,地中 温度は深度の増大に伴って上昇し,地表温度を上回ると 予想される。このため、処分坑道の温度環境によっては, pHが11.0を下回る期間は,20℃の環境で予測した期間よ りも短縮となる可能性が示された。このことは,放射性 廃棄物処分場の閉鎖までの期間を短くできる可能性を示 唆するものと考える。

5. まとめ

HFSCセメント硬化体について、W/Bおよび温度を変え て2600日間の浸漬試験を行い、その分析結果より、HFSC の硬化体に触れた浸漬水のpHが人工バリアに影響のな いとされる、11.0を下回る期間を予測した。以下に結果 を示す。

- 1) 浸漬期間の増加に伴い,硬化体の浸出液のpHは指数 関数的に減少した。
- 2) TEM観察及びX線回折分析で、HFSC中の硬化体の鉱 物構成は、W/Bによって若干の違いを生じるが、浸漬 温度には依存しないことが示された。
- 3) 有効材齢を導入して温度補正を行い, W/Bごとの有 効材齢とpHの関係を求めた。
- pHが11.0を下回る期間は、W/B=30%の場合は浸漬 温度20℃で88.6年を要する。
- 5) 浸漬温度が10℃上昇するごとに、pHが11.0を下回る 期間が半減し、温度上昇に伴い大幅に短縮することが 予測された。
- 6) 処分坑道の温度環境によっては、HFSCのpHが11.0 を下回る期間は、20℃の環境で予測した期間よりも短 縮となる可能性が示された。

参考文献

- 核燃料サイクル開発機構・電気事業連合会:TRU 廃 棄物処分技術検討書,JNCTY1400 2005-013, (2005)
- 久保博,他:ベントナイト系緩衝材のコンクリート 間隙水による長期変質の基礎的研究,土と基礎, Vol.46, No.1, pp.31~34, (1998)
- 3) 入矢桂史郎,他:ポゾランを高含有した低アルカリ 性コンクリートの開発,コンクリート工学年次論文 報告集, Vol.25, No.1, pp.185~190, (2003)
- 4) 入矢桂史郎,他:ポゾラン高含有ペーストのpHに

Fig. 10 W/B=50%の供試体における有効材齢とpHの関係 Relations Effective Material Age and pH in Test Pieces of W/B=50%

Fig. 11 浸漬温度およびW/BごとのpHが11.0を下回る年数 The Years on Which pH is Less Than 11.0 with Curing Temperature and W/B

及ぼす水結合材比および養生温度の影響, コンクリート工学年次論文報告集, Vol.29, No.1, pp.219~224, (2007)

- 5) 人見尚,他:高フライアッシュ含有シリカフューム セメントの長期の化学的特性,コンクリート工学年 次論文報告集, Vol.32, No.1, pp.737~742, (2010)
- 6) 日本コンクリート工学協会:自己修復研究委員会報 告書, PP.117~118, (1996)
- 7) 笠井哲郎:各種ポルトランドセメントの水和収縮に 及ぼす温度の影響、コンクリート工学年次論文報告 集, Vol.19, No.1, pp.577~582, (1997)
- (3) 寺本篤史,丸山一平:低水結合材比シリカフューム セメントペーストの自己収縮特性に関する研究,コ ンクリート工学年次論文報告集, Vol.31, No.1, pp.601~606, (2009)