ラックと建屋をダンパーで連結した立体自動倉庫の制振技術

吉	田		治	後	閑	章	吉	松	本	研	
				(7	本社設書	計本部))	(本	、社設書	+本部)	
富	橋	直	哉	鈴	木	基	倫	佐	野	剮	志
(広島)	支店建	築設計	·部)	(名古)	量支店植	構造設	計部)				

Vibration Control Method for Automated Storage and Retrieval Systems using Damper Connection between Racks and their Outer Building

Osamu Yoshida	Shokichi Gokan	Kenichi Matsumoto
Naoya Tomihashi	Motomicih Suzuki	Takeshi Sano

Abstract

To mitigate the damage to automated storage and retrieval systems caused by seismic motion, a vibration control method using damper connections between racks and their outer building was developed. A 1/2 scaled model of the system was installed on a shaking table and its vibration control performance was evaluated. As a result, it was found that the damping ratio of the rack has been increased to about 20%, and the maximum acceleration response of the top of the rack due to seismic motion reduced to less than 1/3 of that of the original uncontrolled rack. This result agreed with the analytical result.

概 要

立体自動倉庫の地震対策技術として,積荷を収納するラックと外周建屋をダンパーで連結して応答低減を図る 連結制振技術を開発した。三次元振動台上に実物の1/2スケールのラックと建屋からなる縮小試験体を設置して 加振実験を行い,連結制振技術の制振効果を検証した。その結果,非制振では1%未満と非常に小さかったラッ クの減衰は,連結制振技術の適用により20%程度に大きく上昇し,振動台に地震波を入力した時のラック最上段 の最大応答加速度は最大で非制振の1/3以下に低減されることが確認された。この結果は解析による検証結果と 概ね一致した。

1. はじめに

近年では、物流施設の効率化のために、積荷を収納す るラックが高層化し、ラック間にスタッカークレーンを 配置して、自動で積荷の出入庫管理を行う大型の立体自 動倉庫が増えてきている。

2011年3月11日に発生した東日本大震災では、東北地方 から関東地方にかけて広範囲にわたって震度5弱以上が 生じた。これに伴い、立体自動倉庫では、ラックの構造 体自体には大きな被害が生じなくても、大きな揺れよっ てラックから積荷が落下するなどして、復旧までに多大 な時間を要する結果となり、その間、物流機能が停止し て社会的に大きな影響を及ぼした。

一般的に,積荷が落下するラックの応答加速度などの 条件は,積荷の種類及び積み付けパターン,加振振動数 によって異なる。従って,実施設計においては,積荷の 情報と解析や実測により求めたラックの固有振動数より, 積荷の落下を防止するためのラックの応答に対するクラ イテリアを設定することとなる。場合によっては,実際 の積荷を振動台によって加振してクライテリアを設定す ることも考えられる。このようにして,どの程度の地震 に対してどの程度までラックの応答を低減させる必要が あるかを見極めた上で最適な対策技術を選択する。

外周建屋とは独立したユニット式のラックの場合,こ のような問題に対処するための地震対策技術としては, Fig. 1に示すように,ラック頂部にTMD (Tuned Mass Damper;同調質量ダンパー)と呼ばれる制振装置を設置 する,外周建屋とラック頂部を制振装置(ダンパー)で 連結する,ラック基礎部分を免震化する,さらに免震化 したラックをアクティブ制御装置で制御するといった技 術が考えられる。

この中から、コスト、工期ともある程度に抑えること ができ、地震時に積荷が落下する被害も最小限に抑えら れる有効な地震対策として、著者らはユニット式のラッ クと建屋をダンパーで連結する連結制振技術を開発した。

この制振手法の設計目標は,震度5強程度以下の比較的 発生確率の高い地震に対して,積荷の落下を最小限に留 めることである。また,この連結制振では,ラックだけ でなく建屋の揺れも低減でき,既存建物にも適用可能で ある。

本報では、まず、開発した連結制振技術の概要を述べる。次に、連結制振技術の制振効果を検証するために行った実物の1/2スケールの縮小試験体の加振実験結果について述べ、解析によってその結果を検証する。

大林組技術研究所報 No.77 ラックと建屋をダンパーで連結した立体自動倉庫の制振技術

Fig. 1 立体自動倉庫の地震対策技術 Vibration Control Methods for Automated Storage and Retrieval Systems

2. 連結制振技術の概要

Fig. 2に立体自動倉庫の連結制振の概要図を示す。この 図に示す通り、ユニット式ラックと建屋を制振装置(ダンパー)で連結した構造となっている。

これは、一般的に、質量が小さくて剛性の高い構造体 と質量が大きくて剛性の低い構造体をダンパーで連結す ると非常に大きな制振効果(減衰)が得られるという理 論に基づくものである¹⁾。近年では、この連結制振技術 は、超高層集合住宅にも用いられている²⁾。

立体自動倉庫の場合, ラックは建屋と比較すると剛性 が低い構造体である。また, ラックには積荷が積載され るので, 主に架構のみの建屋と比較して質量が大きくな る。従って, 質量が大きくて剛性の低いラックと質量が 小さくて剛性の高い建屋をダンパーで連結することによ り,大きな制振効果が期待できる。この概念図をFig.3 に 示す。

東日本大震災では,積荷を出し入れする間口方向にラ ックが大きく揺れ,ラック間の開口部に積荷が落下した ケースが多く見られたため,連結制振の制振対象の方向 としては,ラック間口方向のみとしている。

3. 縮小試験体による加振実験

3.1 試験体

Fig. 4, Fig. 5, Photo 1に試験体の断面図, ラック最上 部平面図, 写真をそれぞれ示す。ラックは実物の1/2スケ ールとし, 高さ10段8,700mm, 幅662.5mm, 奥行6連 4,095mm, 4列, 合計240パレットの試験体とした。ラッ クの間口方向の各構面は鉄骨溶接によるラチス構造とし,

Fig. 2 立体自動倉庫の連結制振 Vibration Control Method Using Damper Connection

間口と直交する桁行方向は水平梁と水平ブレースをボル ト接合にて構面同士を一体化させることによりラックを 構築した。ラック背面には、ターンバックルを用いたブ

Fig. 4 試験体断面図 Section of Test Structure

List of Structural Member for Rack					
□50x50x2.3t					
φ 27.2x1.9t					
φ 21.7x1.9t					
φ 21.7x1.9t					
M10					

a) 試験体全景(正面)

b) 試験体全景(側面) Photo 1 試験体写真 Photos of Test Structure

d) オイルダンパー

レースにより桁行方向の剛性を確保している。ラック最 上段は、ラック2列をダンパーフレームにより一体化し、 建屋5FLレベルとダンパーで連結できる構造とした。ラ ックの部材リストをTable 1に示す。

建屋は, 高さ10,225mm, 平面5,100mm×5,995mm, 実 物の1/2スケールの鉄骨ブレース構造の試験体とした。建 屋5FLレベルはラック最上段をダンパーで連結できる構 造とした。

ラックに積載されるパレット(20kg)及び積荷(30kg) は鉄板及び鉛の重錘で代用し、ボルトでラックに固定した。

ラックと建屋を連結するダンパーとしては,鉄道車両 用のオイルダンパーを用いた。ダンパーフレームで連結 された一対のラックに3台,合計6台のオイルダンパーを 設置した。オイルダンパーの減衰係数は39.2kNs/mでゴム ブッシュによる取付部の剛性が支配的なダンパー剛性は 17.2kN/mである。また,可動ストロークは±63mmであ り、ラックの間口方向を制振対象とした。使用したオイ ルダンパーの諸元をTable 2に示す。

3.2 計測方法

計測項目は、振動台加速度、建屋5FL加速度、ラック 中段(5段目)加速度、ラック上段(最上段;10段目)加 速度、ダンパー変位(建屋5FL-ラック最上部ダンパー フレーム間の相対変位)について計測を行った。

3.3 実験方法

加振実験は,まず微小振幅でのランダム波加振により, 振動台の入力加速度に対する試験体の伝達関数を取得し, 固有振動数(固有周期)及び減衰を調査した。

次に、地震波入力に対する試験体の応答性状を把握す るために、地震波加振を行った。地震波としては、1940 年インペリアルバレー地震におけるエルセントロ記録地 震波のNS成分(以下,エルセントロ波)、平成23年(2011 年)東北地方太平洋沖地震におけるK-NET仙台記録地震 波のうち80秒~140秒のNS成分(以下,K-NET仙台), 同地震での関東某所での再現波のNS成分(以下,再現 波)を用いた。連結制振では、震度5強程度以下の比較的 発生確率の高い地震に対して、積荷の落下を防ぐことを 設計目標としているため、各地震波はそれぞれ最大速度 25cm/sに基準化して入力した。各地震波の加速度応答ス ペクトルをFig.6に示す。

3.4 実験結果

3.4.1 固有振動数及び減衰 ランダム波加振により 取得した振動台入力加速度に対するラック最上段及び建 屋の応答加速度の伝達関数をFig.7に示す。また,得られ た伝達関数に対して,ERA (Eigen System Realization Algorithm)法³⁾を適用して,試験体の固有振動数(固有 周期),減衰,モードを同定した。同定結果から,固有 振動数(固有周期)及び減衰についてまとめた表をTable 3に示す。

これより、ダンパーで連結しない非制振では、建屋の固 有振動数はラックの固有振動数の2.5倍程度であった。

Fig. 7の伝達関数より,連結制振では、ラック,建屋と も1次固有振動数での増幅がほとんど見られなくなって いることがわかる。また、Table 3の同定結果からも、非 制振ではラックの1次の減衰は1%未満、建屋の減衰は1% 程度で非常に小さいが、ラックと建屋をダンパーで連結

Specifications of Oil Damper						
取付長	470 mm					
ストローク	126 mm (±63 mm)					
減衰特性	C=39.2kN s/m					
ダンパー剛性	K=17.2kN/m					
最大速度	0.3m/s					
台教	6 台					

Table 3 固有振動数·減衰同定結果

Identified Natural Frequency and Dampi	Identified	Natural	Frequency	and	Damping
--	------------	---------	-----------	-----	---------

1401	inition i (attain	i i i equene j unu	Bamping
		固有振動数 (固有周期)	減衰
7井 巳	非制振	7.84Hz (0.127s)	0.93%
建座	連結制振	7.65Hz (0.131s)	19.5%
ラック	非制振	3.14Hz (0.318s)	0.66%
1次	連結制振	5.26Hz (0.190s)	19.3%
ラック	非制振	13.5Hz (0.074s)	0.14%
2次	連結制振	13.7Hz (0.073s)	4.0%

することにより、ラック1次、建屋の減衰とも、20%程度 に上昇することが確認された。

3.4.2 地震入力に対する応答 エルセントロ波, K-NET仙台及び再現波の入力に対する, ラック及び建屋 の最大応答加速度を非制振と連結制振で比較した図を Fig.8に示す。

この結果より,連結制振することによりラック最上段 の最大応答加速度は非制振と比較して,エルセントロ波 では1/3以下,再現波では1/2以下に低減された。建屋の 最大応答加速度も1/2程度に低減されている。K-NET仙台 では応答低減が若干悪いもののラック最上段では20%程 度低減された。また,連結制振時のダンパー変位は 5~6mm程度であった。

4. 解析による検証

4.1 解析モデル

解析モデルは質点モデルとした。ラックは10段のパレ ット及び重錘を10質点とし、最上部のダンパーとの取合 い部分の1質点とあわせて11質点とした。剛性は、ラック 柱材の曲げ剛性とラチス材のせん断剛性を考慮した曲げ せん断モデルとした。このモデル化によるラックの固有 振動数は、1次3.23Hz、2次15.7Hzで実験結果とよく一致 している。

建屋はブレースのせん断剛性を考慮した1質点のせん 断モデルとした。ただし、このモデル化では建屋の固有 振動数は12.7Hzとなり、実測結果と大幅に異なったため、 建屋の剛性は実験による建屋の固有振動数7.65Hzと一致 するように調整して用いた。この原因としては、ブレー スの取合い部で局所的に剛性が低下していたか、圧縮側 で剛性に寄与していなかった可能性が考えられる。

減衰はモード減衰として、減衰定数の値は実験結果を 用いた。ラックと建屋を連結するオイルダンパーは、 Table 2に示す減衰係数とダンパー剛性を持つMaxwell型 モデルとした。解析モデルをFig. 9に示し、その諸元を Table 4に示す。

4.2 地震入力に対する応答

Fig. 10に地震入力に対するラックの最大応答加速度の 解析結果を実験結果と比較した図を示す。これより,非 制振の解析結果は,K-NET仙台では実験結果と若干差異 が見られるものの,それ以外ではラック最上段の最大応 答加速度は実験結果と概ね一致している。また,連結制 振の解析結果は,各地震波とも実験結果とよく一致して いることがわかる。非制振で実験結果と解析結果に若干 差異が見られるのは,非制振ではラックの減衰が1%未満 と非常に小さいため,実験と解析でのわずかな固有振動 数の違いで応答の違いが大きくなるためである。今後, 解析モデルの精査が必要である。

Fig. 9 解析モデル Analytical Model

Table 4	解析モデル諸元
---------	---------

Specifications	of Analytica	l Model
opeenieutions	or rinary nee	ii iiioaci

戶几	高さ	質量	曲げ剛性	せん断剛性					
权	m	t	105 kN m/rad	kN/mm					
ラック									
R	8.84	0.98	4.65	164					
10	7.93	1.19	5.14	164					
9	7.11	1.62	4.76	164					
8	6.23	1.59	5.14	164					
7	5.41	1.62	4.76	164					
6	4.52	1.59	5.14	164					
5	3.70	1.62	4.76	164					
4	2.82	1.59	5.14	164					
3	3.84	1.62	4.76	541					
2	2.00	1.62	4.76	541					
1	0.23	1.31	18.7	541					
R	8.84	6.43	_	15.6					

5. まとめ

立体自動倉庫の連結制振技術の制振効果を検証するために,三次元振動台上に実物の1/2スケールのラックと建屋からなる試験体を設置して加振実験を行った。

その結果, 非制振では1%未満と非常に小さかったラッ クの減衰は, 連結制振技術の適用により20%程度に上昇 した。振動台に地震波を入力した時のラック最上段の最 大応答加速度については, 連結制振技術の適用により最 大で1/3以下に低減されることが確認された。さらに, 連 結制振では, 建屋の減衰も20%程度にまで上昇し, 地震 時の最大応答加速度も非制振の1/2程度まで低減できる ことが確認された。

これらの結果は、解析によって概ね再現できることが わかった。しかしながら、実験結果と解析結果には若干 差異が見られる部分もあり、今後、解析モデルの精査が 必要である。特に非制振では、ラックの減衰が非常に小 さいため、固有周期の若干の違いで応答が大きく変わる 可能性があり、実施設計の上では、解析結果にばらつき が生じることを留意して評価する必要がある。

謝辞

本報では、防災科技研のK-NETの観測記録データを使 用させて頂きました。関係各位に謝意を表します。

参考文献

- 1) 蔭山満,他:複合構造物の最適制振に関する研究(その1~その3),日本建築学会大会学術講演梗概集B, pp.725~730,(1993)
- 西村勝尚,他:連結制振構造を適用した超高層RC 造 建物の応答性状(その1~5),日本建築学会大会学 術講演梗概集C-2, pp.859~868, (2008)
- Juang J.N., Pappa R.S. : An eigensystem realization algorithm for modal parameter identification and model reduction, Journal of Guidance Control and Dynamics, Vol. 8, pp.620~627, (1985)