大林組技術研究所報 No. 77 2013

固体音領域における建物への鉄道振動の入力に関する研究

藤澤康仁 渡辺充敏

Study on Vibration Propagation from Railways to Buildings in Structure-borne Sound Frequency Range

Yasuhito Fujisawa Mitsutoshi Watanabe

Abstract

This report presents the results of applying two-dimensional finite element methods for predicting the vibration propagation from railways to buildings in structure-borne sound frequency range. First, analyses of vibration propagation by subways were conducted for a spread foundation structure and a pile foundation structure, and the modeling technique for buildings and the accuracy of analyses were examined. Through modeling of substitution of equivalent two-dimensional elements for discrete columns, beams, and piles, good agreements were obtained between the calculated and the measured results. Moreover, analytical parametric studies were conducted on the spread foundation structure, and qualitative characteristics of vibration propagation to buildings ware demonstrated.

概 要

列車通過時に建物内で発生する固体音を対象に、地盤から建物への振動入力の予測技術を確立することを目的 として、2次元有限要素法による解析を行った。まず直接基礎・杭基礎構造建物を対象として、地下鉄からの振 動伝搬について解析と実測の比較を行い、モデル化手法から予測精度の検証まで行った。その結果、離散的に位 置する柱・梁・杭を等価な2次元モデルに置換する手法により、解析と実測に良好な対応が得られることを示し た。また直接基礎建物を対象にケーススタディを行い、地下躯体構造と建物へ入力される振動について定性的な 傾向を示した。

1. はじめに

鉄道近傍に建物が位置する場合,列車通過時に発生す る振動が地盤を介して建物地下躯体へ入力され,居室で 固体音として聞こえることがある。鉄道からの固体音は 伝搬過程が複雑で,また固体音の主成分は63Hz帯域から 125Hz帯域であり,環境振動として取り扱うには周波数 が高いこともあり,精度良く予測することが難しい場合 が多い。

特に地盤から建物地下躯体へ入力される振動について は多くの実測や解析事例が報告されているが,各種の地 盤構造や建物地下躯体の仕様による違い,防振材等の対 策効果などが明確になっていないのが現状である。この ため設計段階では,過去の実測事例等を基にした経験式 による予測が行われることが多い。

本研究では、鉄道からの固体音に対して建物の合理的 な設計を行うための、地盤から建物への振動入力の予測 技術を確立することを目的とする。本報では予測手法と して2次元有限要素法を用いて,まず直接基礎と杭基礎構 造建物を対象として地下鉄からの振動伝搬について解析 と実測の比較を行うことで、モデル化手法から予測精度 の検証を行う。

次に直接基礎建物を対象として,地下躯体構造の違い や地下部への防振材による対策が,建物への振動伝搬に 与える影響について,ケーススタディを行う。

2. 直接基礎建物を対象とした解析と実測

2.1 建物概要

対象建物は地上9F,地下1FのRC造事務所ビルであり, 土被り2.6mの地下鉄構築から6m離れた位置に建物地下 外壁がある (Fig. 1)。地下鉄構築と建物外壁面は,Fig. 1 の奥行き方向に平行な位置関係にある。建物基礎は直接 基礎形式であり,耐圧版厚さは500mm,地下外壁厚さは 300mmである。

振動測定はFig. 1に示すスラブ上と地下外壁面の計6点 の上下方向について行った。なお1F-S0は地盤上に片持ち で支持された150mm厚スラブ上で,1F-S1,B1F-S1~S3 は柱際位置である。分析量は,時間重み特性FASTによる 地下鉄通過時間内の振動加速度レベルのエネルギー平均 値とした。

2.2 解析概要

地盤は幅58.6m,深さ方向40mをモデル化範囲とし,境 界条件は側方,底面とも粘性境界とした。なおモデル化 範囲と境界条件の設定方法は,解析対象とする周波数範 囲内での妥当性を別途確認している。要素には平面ひず み要素を用い,要素分割は解析上限周波数に対する分解 能を得る大きさ(最小0.075m×0.1m)とした。また地盤 の物性値は柱状図のN値から推定し¹⁾,減衰は2%とした (Table 1)。 建物は、地下部分と1Fスラブまでをモデル化した場合 と、2Fスラブまでをモデル化した場合の2モデルについ て解析を行った。要素は地盤と同様全て平面ひずみ要素 を用い、要素分割は0.1m×0.1mを基本とし、コンクリー トはヤング率2.4×10¹⁰N/m²、ポアソン比0.17、密度 2400kg/m³、減衰2%とした。Fig. 1の奥行き方向1スパン分の曲 げ剛性と質量が等価となるようなヤング率と密度を与え て2次元モデルに置換した。

解析は周波数領域で行い,地下鉄構築スラブ面の上下 方向に正弦波の単位加振力を等分布で与えた際の定常応 答を求めた。対象周波数は1/3オクターブバンド中心周波 数で16Hz帯域から160Hz帯域までとし,各帯域内で10個 の周波数について計算を行い,帯域内の応答のエネルギ ー平均値を求めて1/3オクターブバンドへ変換した。評価 量はアクセレランスレベル(単位加振力あたりの振動加 速度レベル)とした。

実測値との比較については、1F-S0でアクセレランスレベル計算値と実測値が一致するよう加振力を逆算し、単位加振力との差分を各点のアクセレランスレベルに加算する方法で行った。また比較には、実測位置を含む3節点の結果を平均した数値を用いた。

Fig. 1 直接基礎建物と地下鉄構築の位置関係 Spatial Relation between Spread Foundation Structure and Subway

2.3 解析結果

計算値と実測値を比較してFig. 2に示す。なお実測値は 列車によるばらつきがあるため、複数列車の値の最大値 と最小値の幅で示している。

1Fモデル・2Fモデルとも,鉄道からの固体音の主成分 となることが多い63Hz前後では,各点で計算値と実測値 は良好に対応しているが,16Hzから31.5Hzでは計算値の 方が大きい結果となっている。これは1F-S0では,31.5Hz 以下の周波数域では前面の道路振動の影響が大きく,暗 振動との差(SN比)が十分に得られておらず,加振力を 実際よりも過大に評価しているためである。

一方125Hzと160Hzの高い周波数域では、計算値の方が 小さい傾向となっている。1F-S0は前述の通り地盤上のス ラブであり、解析では地盤の上にスラブが直接接してい るモデルとしているが、実際には施工上スラブの下に捨

Table 1 解析に用いた地盤物性値 Properties of Soil for Analysis

層	層厚	N値	Vs m/s	$\rho \text{ kg/m}^3$	ポアソン比	減衰
1	5.3	3	101	1600	0.49	
2	1.6	15	170	1700	0.48	
3	4.5	45	223	1900	0.47	2%
4	4.6	25	218	1800	0.47	
5	4.2	50	259	1800	0.45	
6	6.6	10	191	1600	0.47	ĺ
7	13.2	60	434	2000	0.45	

Fig. 2 振動加速度レベル計算値と実測値 Calculated and Measured Vibration Acceleration Level

てコンクリートや砂利等の下地が存在している可能性が ある。この場合,特に高い周波数域で振動が低減するこ とが推測され,加振力を過小評価していることが原因の 一つと考えられる。

1Fモデルと2Fモデルの結果は、100Hz以上の高い周波 数域で差が大きくなる傾向がある。

Fig. 3に、計算値と実測値を1F-S1を基準とした相対レベルで表して比較した結果を示す。

80Hz以下の周波数では、1Fモデル・2Fモデルとも、計 算値は実測値の傾向を再現できていることが分かる。従 ってFig. 2では実測値のSN比不足のため誤差が大きく現 れていたが、この周波数領域では今回のモデル化により 建物内の振動伝搬状況を再現できているといえる。

一方100Hz以上では1Fモデルでは計算値は実測値より も小さくなっており、2Fモデルの方が実測値との対応は 良いことが分かる。これより、1Fスラブまでを予測対象 とするには、少なくとも2Fスラブまでをモデル化する必 要があるといえる。

3. 杭基礎建物を対象とした解析と実測

3.1 建物概要

対象建物は杭基礎構造の超高層RC造集合住宅である。 地下鉄シールドと杭外周部は最短で2mの距離にあり、シ ールドの土被りは26mである(Fig. 4)。敷地は約50m深 さまでがN値10程度以下の軟弱地盤で、杭先端位置は GL-67m位置となっており、また耐圧版は3mのマットス ラブである。

敷地における地下鉄通過時の振動測定は、建物建設前 の更地の状態,掘削終了・杭打設後,耐圧版打設後,の3 回実施した。更地の状態では、地中30m深さのV0,地表 地盤面V1~V3の計4点で測定した。地中の測定は、ボー リング孔底に防護ケースに収納した振動ピックアップを 固定し、セメントミルクと土砂で埋め戻して行った。杭 打設後と耐圧版打設後の測定位置は、Fig.4に示す杭頭位 置2点(VA・VB)と耐圧版上1点(VC)とした。振動の 測定方向は、何れも上下方向とした。

Fig. 5に建物建設前の振動実測値を示す。分析量は、時間重み特性FASTによる地下鉄通過時間内の振動加速度 レベルのエネルギー平均値とし、複数本列車の平均値を 算出している。地中測定点V0では、測定点に近い下り線 の方が発生振動は大きく、31.5Hz付近にピークが見られ る。また125Hz以上の高い周波数成分では、ほぼ平坦な 周波数特性となっている。地表面の測定点では、上り・ 下り線とも距離による減衰はほとんど見られない。

3.2 解析概要

解析は実測を行った状態に合わせて、更地の状態、杭 打設後、耐圧版打設後、の3つのモデルを対象として2次 元有限要素法により行った。地盤のモデル化範囲は、幅 70m、深さ方向70mとし、境界条件は側方・底面とも粘

Fig. 3 相対振動加速度レベル計算値と実測値 Calculated and Measured Relative Vibration Acceleration Level

Fig. 5 建物建設前の地盤振動実測値 Measured Vibration Acceleration Level on Ground

性境界とした。なお地盤境界と地下鉄構築の距離は5mとした。その他,地盤のモデル化方法や解析方法は2章における解析と同様とした。設定した地盤の物性値をTable 2に示す。

建物躯体と地下鉄シールド躯体のコンクリートの物性 値は2章と同一とし、山留め壁はヤング率4.9×10⁸N/m², ポアソン比0.3,密度2000kg/m³とした。また減衰は地盤、 建物・地下鉄シールド躯体、山留め壁とも一律2%とした。 建物の杭は、奥行き方向1スパン分の曲げ剛性と質量が等 価となるようヤング率と密度を小さく与えた。

実測値との比較は、まず地盤のみのモデルで地下鉄シ ールド底面を単位力加振し、地中・地表の実測位置での アクセレランスレベルが実測値と一致するよう加振力を 逆算した。次に逆算した加振力を用いて、杭打設後、耐 圧版打設後、の2つのモデルの実測位置における振動加速 度レベルを算出した。

3.3 解析結果

杭施工後の杭頭位置における振動加速度レベルの計算 値と実測値を比較してFig. 6に示す。なお実測値は2章同 様,複数列車の値の最大値と最小値の幅で示している。

杭頭での計算値は、下り線ではVA・VB位置とも高い 周波数まで実測値と良く対応しており、杭の2次元モデル 化方法が妥当であるといえる。上り線の63Hz付近で計算 値の方が若干大きい値になっているが、地中での振動測 定点V0は、上り線からの振動が下り線シールドにより遮 蔽される位置関係にあり、高い周波数では地盤のみのモ デルで逆算した加振力に誤差を生じ易いことが一因と考 えられる。

耐圧版施工後の耐圧版上での振動加速度レベルの計算 値と実測値を比較してFig.7に示す。全体的には、計算値 は実測値の周波数特性をほぼ再現しているといえるが、 下り線の40Hz付近では計算値がやや大きい傾向となっ ている。杭頭VAの結果と比較すると、耐圧版が付加され ることによる振動低減効果は、実測値では40Hz付近で約

ſable	2	解	析り	こ用い	いた	地盤物性	値
Prop	oert	ies	of	Soil	for	Analysis	

層	層厚	N値	Vs m/s	ρ kg/m ³	ポアソン比	減衰
1	4	8	122	1600	0.49	
2	6	4	128	1500	0.49	
3	20	2	141	1500	0.49	
4	15	3	171	1500	0.49	2%
5	5	20	269	1700	0.47	
6	3	8	215	1600	0.49	
7	14	40	292	2000	0.45	
8	3	60	485	2000	0.45	

Fig. 7 耐圧版上の振動加速度レベル計算値と実測値 Calculated and Measured Vibration Acceleration Level on Foundation Slab

10dB得られているが、計算値では2dBから6dBと計算値 の方が小さくなっている。誤差の原因は特定できていな いが,地盤のモデル化範囲,減衰の与え方などについて, 更に検討の余地があると考えられる。

4. 地下躯体構造による振動伝搬特性の検討

4.1 検討概要

地下躯体構造によって,建物へ入力する鉄道振動がど のように変化するかを検証するため,直接基礎建物を対 象として,地下外壁厚,底版厚さ,防振材の有無等のケ ーススタディ解析を2次元有限要素法により行った。

計算対象としたモデルをFig. 8に示す。地盤は2層構造 とし、建物は地下1階、地上2階スラブまでをモデル化し た。加振点は地上軌道と地下軌道を想定して、建屋外壁 から4m離れた地上位置と地下10m位置の2点とし、上下 方向に単位加振力を与えた。奥行き方向に不連続な柱・ 梁は、ヤング率と密度をコンクリートの値より小さく設 定し、減衰は地盤・コンクリートとも2%とした。その他 のモデル化や解析条件、境界条件等は、前章までと同一 の手法とした。

なお各ケースの計算結果は、地上・地下加振に対して 地盤のみのモデルで地表基準点位置での上下方向の振動 加速度レベルを求めておき、その値との相対レベルで表 した。この値は建物建設前の地表面の振動値からの、建 物躯体面における振動低減量(入力損失)に相当する。

4.2 耐圧版厚さの影響

耐圧版厚さを0.6mから2mまで変化させた場合の,耐圧 版上と1Fスラブ上の平均レベルをFig.9に示す。

耐圧版上の結果は、地上・地下加振とも、厚さに応じ て低い周波数から高い周波数まで振動低減効果が大きく なっている。また地下加振の方が、耐圧版厚さの増加に よる振動低減効果が大きい傾向がある。これは地上加振 の場合には、地表付近から入力する振動の影響が大きい のに対し、地下加振の場合には耐圧版から入力する振動 の影響が大きいことによるものと考えられる。

IFスラブ上では、20Hz以下では耐圧版上における結果 と同様の傾向が見られるが、25Hz以上では逆に増幅する 周波数も見られる。これは耐圧版厚さを変えることで、 IFスラブのモードが変化したことによるものと考えら れる。

なお地下加振の方が地上加振よりも、入力損失が小さ くなっているが、地下加振の場合には、地表面の基準点 までの減衰があるため、見かけ上建物躯体による振動低 減効果が小さくなるためである。

4.3 地下外壁厚さの影響

加振位置側の地下外壁厚さを0.4mから1mまで変化さ せた場合の,耐圧版上と1Fスラブ上の平均レベルをFig. 10に示す。

加振位置で比較すると、地上加振の方が地下加振より も、地下外壁厚さの増加による振動低減効果が大きい傾 向が見られる。これは地上加振の場合、地表付近から入 力する振動の影響が大きいために、外壁による効果が得 られやすいためと考えられる。ただし、地下加振で耐圧 版厚さを増加させた場合に比べると、振動低減効果は小 さい。

4.4 地下防振材の影響

加振位置側の地下外壁と山留壁間に防振材を設置した 場合と,さらに耐圧版下にも防振材を設置した場合の, 耐圧版上と1Fスラブ上の平均レベルをFig. 11に示す。な

Effect of Thickness of Underground Wall

お防振材は、厚さ0.1mの発泡系材料を想定し、ヤング率 1.0×10⁶N/m²,ポアソン比0.3,密度47kg/m³,減衰15%と した。

地上加振の場合には、地下外壁を防振することによる 振動低減効果は20Hz以上で得られており、耐圧版まで防 振すると、31.5Hz以上では防振なしの場合より10dB以上 の振動低減効果が得られている。なお耐圧版を防振した 際には、耐圧版上では20Hzから25Hzで振動低減効果がマ イナスとなっているが、耐圧版と防振材の系から成る固 有振動が新たに生じたことによるものと考えられる。

地下加振の場合には、地上加振の場合より防振材による振動低減効果は小さく、外壁のみ防振した際には40Hz 付近までは防振効果がほとんど見られない。また耐圧版 まで防振した際の耐圧版上の結果は、耐圧版と防振材の 系の固有振動の影響と考えられる防振効果の低下が、地 上加振の場合と同様、20Hzから25Hzで見られる。

これらより,地下躯体に防振材を設置する効果は軌道 との位置関係により大きく異なることがわかる。

5. まとめ

列車通過時に建物内で発生する固体音を対象に,地盤 から建物への振動入力の予測技術を確立することを目的 として,2次元有限要素法による解析を行った。

まず直接基礎・杭基礎構造建物を対象として,地下鉄 からの振動伝搬について解析と実測の比較を行い,モデ ル化手法から予測精度の検証まで行った。その結果,離

Effect of Vibration Isolator

散的に位置する柱・梁・杭を等価な2次元モデルに置換す る手法により,解析と実測に良好な対応が得られること を示した。

また直接基礎建物を対象にケーススタディを行い,地 下躯体構造と建物へ入力される振動について定性的な傾 向を示した。

参考文献

- 太田 裕,他:S波速度を他の土質的諸指標から推定 する試み、物理探鉱、第29巻、4号、pp. 31-41、(1976)
- 吉原 醇一,他:地下鉄振動の伝搬性状に関する研究(その1),大林組技術研究所報No.42,(1991)
- 吉原 醇一,他:地下鉄振動の伝搬性状に関する研究(その2),大林組技術研究所報No.43,(1991)
- 藤井 光治郎,他:鉄道からの環境振動予測,日本 建築学会大会学術講演梗概集,pp.287-290,(1999)
- 5) 吉田 一博,他:地下鉄から生じる地盤振動伝播に 関する基本的な検討,日本建築学会大会学術講演梗 概集,D-1,pp.325-326,(2007)