大林組技術研究所報 No. 77 2013

ハイパーディープウェル工法[®]の開発

山	田	祐	樹	森	尾	義	彦	山	本	彰
西	川	直	仁	藤	井	治	彦	桐	山	久
(本社工)	ンジニ	アリン	グ本部)	(本社エ	ンジニ	アリン	(グ本部)	(東	〔邦ガス	株式会社)

Development of New Groundwater Lowering Method termed "Hyper Deep Well[®]"

Yuki Yamada	Yoshihiko Morio	Akira Yamamoto
Naohito Nishikawa	Haruhiko Fujii	Hisashi Kiriyama

Abstract

In the application of open-cut methods in urban areas in recent years, a tendency toward formation of large-depth excavations is seen, and a groundwater lowering method is indispensable in excavation work. To reduce the heaving of an artesian head, it is necessary to build numerous deep wells in the construction area. In this case, groundwater lowering may have a large influence on construction, and hence, there is an increasing demand for an efficient groundwater lowering method. This paper presents an outline of our newly developed method termed the hyper deep well method that is aimed at improving the pumping capability of a well. The results of a verification experiments performed using a model and an on-site pumping test are described. It is found through these verification experiments that the pumping efficiency improves greatly by using the newly developed hyper deep well method. Further, it is clarified that the developed method is about 1.8 -times more effective than the conventional groundwater lowering method.

概 要

都市部における開削トンネルや建築の地下掘削工事では、近年、大規模・大深度化する傾向がみられ、掘削 工事に際しては、地下水対策工が必須となっている。盤ぶくれ対策では、高い被圧地下水位を大きく低下させ なければならない場合、掘削敷地内に数多くの揚水井を設置する必要があるなど、地下掘削工事の施工性に大 きな影響を与えかねず、効率的な地下水対策が要求されるようになってきている。本報では、井戸の揚水能力 の向上を目的として新たに開発した真空圧を併用したハイパーディープウェル工法の概要について述べるとと もに、室内模型実験ならびに現場揚水試験による効果の検証結果について述べる。現場揚水試験の結果、新た に開発したハイパーディープウェル工法により揚水能力は大きく向上し、従来工法と比較して地下水低下量が 最大で約1.8倍増加することがわかった。

1. はじめに

近年,土木,建築を問わず都市部における開削工事は, 大規模・大深度化する傾向にあり,施工に際しては掘削 時の地盤の安定やドライワーク用としての地下水対策が 必須となっている。

地下水対策工において一般に用いられるディープウェ ル工法では、帯水層の厚さや影響半径、透水係数など地 盤の水理定数をもとに必要な水位低下量に応じて井戸の 配置が検討される。

一方,建物の構造や仮設備,施工方法などにより,井 戸が設置可能な箇所は制限されることが多い。また,施 工性やコストを考慮すると,極力井戸本数を削減したい のが現場の要望である。しかし,透水性の低い地盤や帯 水層厚さが薄い地盤,掘削深度が深く必要地下水位低下 量が大きい場合には,所定の水位低下量を確保するため に井戸の設置本数を多くせざるをえない。このため,地 下掘削工事の工程や施工性に大きな影響を与えているの が現状である。そこで、効率的な揚水により、井戸本数 の削減が可能な真空を併用した揚水工法(以下、ハイパ ーディープウェル工法®と呼ぶ)の開発を行った。

本報では、ハイパーディープウェル工法の概要につい て述べるとともに、室内ならびに実現場において実施し た揚水試験の結果に基づき、本工法による揚水能力の改 善効果について述べる。

2. ハイパーディープウェル工法の概要

一般的な地下水対策工法¹¹としては,重力式揚水のデ ィープウェル工法,真空を併用したバキュームディープ ウェル工法,ウェルポイント工法などがある。揚水能力 を向上させる方法としては揚水井戸内を真空にするバキ ュームディープウェル工法がある。揚水能力を向上させ ることにより,井戸の本数の削減やスクリーン長を短く できるなどの利点があるが,既存の方法では,空気の侵 入により井戸内の真空度が低下し,その効果が継続的に 得られにくいなどの問題がある。そこで,井戸内の構造 を改良し,揚水井戸内の水位を一定に保持することによ り真空圧を安定的に作用させることが可能な構造を開発 した。

ハイパーディープウェル工法の概念図をFig.1に,井戸 の構造をFig.2に示す。ハイパーディープウェル工法は, 一般的な重力式のディープウェル工法の設備に加え,主 に井戸内に設置する内管,密閉が可能な井戸蓋および真 空設備で構成されている。揚水井内に内管を設置するこ とにより,井戸内に集水された地下水が内管を越流して 揚水ポンプ部に流れ込み,その地下水が揚水ポンプによ り揚水される。内管を設けることにより,真空圧が作用 する井戸内の水位は常に内管上端の高さとなるため,井 戸内の真空圧を一定に保ちやすい構造となっている。

本工法の特徴を以下に示す。

- 井戸内の水位を一定に保つことにより、真空圧を安 定的に作用させることが可能となり、揚水能力の改 善が図れる。
- 新設だけでなく既存の重力式揚水井に追加で設置することが可能である。

3. 室内模型実験による井戸の構造の検証

3.1 実験概要

3.1.1 実験模型 ハイパーディープウェルの構造の 有効性の検証ならびに真空時の井戸内の水位の変化を把 握することを目的として室内模型実験を実施した。実験 時の状況をPhoto 1に示す。

実験模型の模式図をFig.3に示す。実験には実際の揚水 井と同程度となるφ300mm,スクリーン長300mmの井戸 の模型を製作し,用いた。井戸内にφ200mmの内管を設 置し,内管内にφ141mmの揚水ポンプの設置を行った。 井戸の模型は一部アクリル製とし,井戸内の水位変化を 目視により確認できる構造とした。また,井戸の周りに は厚さ100mmのフィルター層(珪砂および不織布)を設 けて,水の流入しやすさを調整できるようにした。

3.2.2 実験ケース 実験のケースと条件をTable 1に 示す。実験は井戸の周りのフィルター層の有無により井 戸内への水の流入のし易さを変化させ、2ケース実施した。

ハイパーディープウェルでは、管内に真空圧を作用さ せるため、管内水位は真空圧を考慮して算出し、管理す る必要がある。このため、ケース1は真空圧による井戸内 の水位変化と井戸内に設置したセンサーによる計測値を 比較し、実際の井戸内水位の評価方法を確認することを 目的として実施した。ケース2では、井戸の周りにフィル ター層を設置することにより、井戸内への水の流入を抑 制することで、ハイパーディープウェルの構造の妥当性 を検証することを目的として行った。

Fig. 1 ハイパーディープウェル工法の概念図 Concept of Hyper Deep Well Method

Fig. 2 ハイパーディープウェル工法の構造 Structure of a Hyper Deep Well

Photo 1 模型実験の状況 Demonstlation of Model Experiment of Hyper Deep

3.2.3 実験方法 実験は幅3m,奥行き3m,深さ1.8m のピット内に水を貯水し、その中に模型井戸を設置して 行った。ピット内の水位は越流部を設け、揚水した水を 循環させるとともに、別途注水を行うことにより常に一 定となるように調整を行った。各ケースの実験方法を以 下に示す。

(1) ケース1 最初に大気圧状態で揚水を開始し, 15分経過毎に管内の空気圧を2kPaずつ低下させる。こ の間,揚水ポンプのバルブは全開とし,揚水を行った。 また,管内の空気圧と水位計による計測ならびに目視 による井戸内水位の計測を行った。管内空気圧を -14kPa(1.4m相当)まで低下させた時点で試験を終了 した(Fig.4参照)。

(2)ケース2 揚水開始とともに管内の空気圧を -10kPaまで低下させる。この時,井戸内の水位が越流 部より高くならないように揚水量の調整を行った。そ の後,15分経過毎に管内空気圧を10kPaずつ低下させ, 揚水ポンプの最大揚水量あるいは真空圧が最大とな るまで試験を実施した(Fig.7参照)。

センサー配置をFig. 3に示す。実験では, 井戸内の水位, 空気圧に加え, 揚水量の計測を行った。なお, 水位計は 大気圧補正機能を有するものを用いた。

3.2 実験結果

3.2.1 ケース1の実験結果 Fig. 4にケース1の水位計 および圧力計の経時変化を示す。また,Fig.5に揚水量の 経時変化を示す。大気圧状態で揚水を行った試験開始後 の15分間では、内管外側に設置した水位計の計測値が 0.1m程度低下している。これは揚水により井戸内の水位 が低下し、内管上端を越流しているためである。また、 その時の揚水量は約400リットル/minであった。

次に、試験開始後15分以降では、真空圧を作用させる ことにより管内の空気圧が徐々に減圧している。また, 揚水量は,減圧直後から一定値を示している。これは減 圧により増加した集水量に対して、ポンプの能力が不足 したためである。一方、内管の外側に設置した水位計に 着目すると、2kPaの減圧直後に計測値に若干の変化がみ られるものの、その後の計測値はほぼ一定値となってい る。Photo 2は計測時の井戸内の水位の状況を, Fig. 6はア クリル部からの目視により実際の井戸内の水位を計測し た結果を示している。図中には内管外の水位計の計測値 ならびに管内空気圧で補正した水位を併せて示している。 実際の井戸内の水位(目視)は、管内の減圧に伴いほぼ 線形的に上昇している。それに対し、圧力補正を行った 計測値もほぼ同様の傾向を示していることがわかる。こ のことから水位計で得られた計測値は、減圧分が井戸内 の水位の上昇によりキャンセルされた値となっており, 圧力補正により井戸内の水位を把握できることが確認で きた。

3.2.2 ケース2の実験結果 ケース2では,井戸の周り にフィルター層を設置したため,井戸内を減圧する前の

Table 1 各ケースの実験条件

大気圧状態での流入量は、フィルター層を設けていない ケース1に比較して大きく減少した。ケース2の実験に先 立ち、小型の揚水ポンプを用いて揚水量の計測を行った 結果は、約7リットル/minであった。ケース1では、大気 圧状態の揚水量が約400リットル/minであったため、フィ ルター層の設置により揚水量は約1/200に低下している。

Fig. 7にケース2における水位計および圧力計の経時変 化を示す。また、Fig. 8に揚水量の経時変化を示す。

管内の空気圧は、15分毎に10kPaずつ減圧されているの が確認できる。次に、揚水量については、計測値にバラ ツキがみられるものの、管内の減圧に伴い、徐々に増加 しているのがわかる。ケース1とは異なり、減圧による集 水量よりもポンプによる揚水能力が勝っているため、各 段階ともに内管上端を越流した状態での揚水が可能であ った。Fig.9は管内の空気圧と揚水量の関係を示している。 揚水量は管内の減圧に比例して増加し、増加の割合は管 内の空気圧-10kPa当たり約80リットル/minであった。こ のことから、ハイパーディープウェルの構造を用いて井 戸内を減圧することにより、井戸内水位を下げずに揚水 量を増加させることが可能であるという同技術の機能を 確認できた。

次に、内管外側に設置した水位計の値(Fig.7参照)に 着目すると、管内の減圧に伴い、水位の計測値も段階的 に低下しているのが分かる。低下量は、試験前の水位を ゼロとすると、管内の空気圧が-80kPa程度まで減圧され た際には、約-8m程度となっている。実験で目視された 井戸内の水位は内管上端にあるため、水位計の計測値は 減圧を含めた値(全水頭)となっている。

Fig. 10は, 管内の空気圧による補正前後の内管外側水 位の変化量と管内空気圧の関係を示している。管内の減 圧が小さい段階で, 値のばらつきが大きいのは, ポンプ のバルブ調整を細かく制御することが困難であったため, 管内水位が越流高さよりも上昇することがあったためで ある。この図から, ケース1と同様に管内空気圧による補 正を行うことで, 実際の井内水位を把握することができ るといえる。

4. 現場揚水試験による効果の検証

4.1 試験概要

ハイパーディープウェル工法による揚水能力改善効果 を検証するために,実現場における揚水試験を実施した ²⁾。以下に揚水試験の概要について述べる。

4.1.1 対象地盤と井戸の配置 対象となるサイトは
某工場の跡地である。試験時の状況をPhoto 3に示す。対象地盤の地層構成ならびに井戸の配置をそれぞれFig. 11,
12に示す。

対象となる地盤は,主にシルト混じり砂層の第一帯水 層と細砂層の第二帯水層で構成されており,今回の揚水 試験では,第二帯水層に設置された揚水井を用いて試験 を行っている。また,揚水井周辺の地下水位を計測する

Fig. 10 管内圧力と水位変化量の関係 ケース2 Relation between Vacuum Pressure and Water Level after Compensation Case2

Photo 3 揚水試験時の状況 Situation of Pumping Test of Hyper Deep Well

ために, 揚水井からの距離が5~55mの間に計4箇所の観 測井を第二帯水層に設置している。

4.1.2 揚水井 揚水井にはハイパーディープウェル
工法を採用した。揚水井の外径はφ400mm,スクリーン
長は1mである。スクリーン長さ、揚水ポンプ径を考慮し、
φ300mmの内管を設置している。

4.1.3 試験方法 試験は、同一の揚水井を用いて真空 あり、なしの2つのケースについて連続揚水試験を実施 した。試験は真空なしのケース実施後に、水位回復を確 認後、真空ありのケースについて実施しており、連続揚 水時間は両ケースともに480分とした。なお、真空ありの ケースでは揚水開始100分間は真空なしの状態で揚水し、 100分から420分まで真空圧を作用させている。

試験では,観測井の水位の経時変化に加え,揚水井内 の圧力,水位ならびに揚水量の計測を行い,真空の有無 について比較検討を行った。

4.2 試験結果

4.2.1 揚水井内の水位と揚水量 Fig. 13に真空なし のケースにおける揚水井内の水位低下量ならびに揚水量 の経時変化を示す。揚水量に着目すると,試験開始直後, 40リットル/min程度あった揚水量は徐々に低下し,試験 終了時には約30リットル/min程度となった。井戸内の水 位低下量は,試験開始後90分で約-10.3mに達し,その後 は一定値になった。これは井戸内の水位が内管上端の越 流部に達したためである。

Fig. 14に真空ありのケースにおける揚水井内の水位低 下量ならびに揚水量の経時変化を示す。本ケースでは、 3.の室内試験と同様に、揚水井内に設置した圧力計で計 測された値を用いて揚水井内の水位の補正を行っている。 試験開始100分後までは真空なしの状態で揚水を行い、 100分以降420分までは真空圧を作用させた。試験期間に おける真空圧の平均値は約65kPaであった。

真空圧を作用させた後、揚水井内の水位の上昇が生じ ているのがわかる。これは、井戸内が減圧されることに より集水量が増加したためである。そこで、揚水量を増 加すると、井戸内の水位が一定となり、真空なしのケー スと同様にコントロールすることができた。揚水量につ

いては、真空作用前は真空なしのケースとほぼ同様とな る30リットル/min程度であった。その後、真空圧を作用 させて揚水量を調整した後で約70リットル/min,真空停 止前には約55リットル/min程度であった。真空を併用す ることにより揚水量に約1.8倍の増加が得られた。真空圧 が作用した場合の井戸内の水位は、真空がない場合の井 戸内の水位と比べて差はないが、後述の周辺の水位につ いては大きな差がみられた。

4.2.2 観測井水位 Fig. 15は, 試験終了直前(真空あ りのケースでは真空を停止する直前)に各観測井で得ら れた水位低下量と揚水井からの距離の関係を示している。 水位の低下量は揚水井から離れるに従い徐々に低下する 傾向がみられ,真空圧を作用させた場合の水位低下量は, 真空圧のない場合に比べて揚水井から10m程度までは約 1.8倍であるのに対し, 揚水井から約50mの観測井では, 約1.4倍であった。真空を作用させることにより観測井の 水位低下量は増加し, 揚水井近傍で効果は大きく得られ た。

Table 2は今回の試験により得られた各ケースの計測 結果の一覧を示している。真空圧の作用分を井戸内の水 位の低下分と仮定すると,真空なしに比較して,真空作 用時は1.56倍の水位低下量であることがわかる。観測井 における水位低下量は揚水井内の水位の低下量の増分か ら考える効果よりも1割程度大きなものであり,真空を併 用することにより井戸の効率を低下させる井戸損失(井 戸流入部で発生する水位低下)を減少させる効果もある と考えられる。

4.3 地盤の透水性の評価

観測井で得られた地下水位低下量をもとに、Theim法 により透水係数の算出を行った。Table 3に各ケースの透 水係数を示す。真空の有無による両ケースの透水係数の 値に差は生じていない。このことから、Fig. 15, Table 2 の水位低下および揚水量の増加は,真空による効果であ ることがわかる。したがって,ハイパーディープウェル は、真空圧による全水頭変化を考慮することで,設計可 能であると考える。

5. おわりに

新たに開発した真空圧を併用したハイパーディープウ ェル工法の概要について述べるとともに,室内模型実験 ならびに現場揚水試験により,同工法の有効性を検証し た。得られた結果を以下に示す。

- 室内模型実験において、ハイパーディープウェルの構造を用いることにより、井戸内の減圧と、揚水 能力の向上が可能であることがわかった。
- 2) 真空作用時の井戸内の水位は、水位計の計測値に 管内圧力による補正を行うことで正しく把握する ことができ、水位管理が可能である。

Comparison of the Water Level of Observation Wells

Table 2 各ケースの計測結果の一覧

List of Measuring Results					
項目	井戸からの距離 (m)	真空なし 水位低下量 (m)	真空あり 水位低下量 (m)	倍率	
揚水井	0	-10.31	-16.11	1.56	
観測井①	5.25	-1.76	-3.17	1.80	
観測井②	9.38	-1.40	-2.54	1.81	
観測井③	32.25	-0.78	-1.31	1.68	
観測井④	54.63	-0.39	-0.55	1.41	
揚水量Q(1/min)	-	31	56	1.81	

Table 3 透水係数の算出結果

Cal	culation	of	а	Coefficient	of	Permeability
-----	----------	----	---	-------------	----	--------------

	真空なし	真空あり
対象観測井	1,2	1,2
揚水量 (1/min)	31	56
帯水層厚さ(m)	4	4
透水係数(m/s)	3.3E-05	3.4E-05

- 3) 現場揚水試験においてもハイパーディープウェル による揚水能力の向上効果が得られ、真空圧が無い 場合に比べて揚水量が約1.8倍に増加した。
- 真空圧を作用させることにより、周辺水位の低下 量も増加し、その効果は特に揚水井の近傍で大きい。
- 5) 揚水試験の結果より算出した透水係数には,真空 の有無による違いはみられなかった。

なお、ハイパーディープウェル工法による揚水効果は、 対象となる帯水層の土質や不圧や被圧などの帯水層によ っても異なると考えられる。今後、適用範囲の設定や事 前の設計を行うためには、更なるデータの蓄積が必要で あると考える。

参考文献

- 1) 土質工学会:根切り工事と地下水,(1991)
- 2)山田祐樹,その他:バキュームディープウェルを用い た現場揚水試験,第48回地盤工学研究発表会,(2013)