フープパネル工法®による壁式橋脚の耐震補強

武 田 篤 史 田 中 浩 一 喜 多 直 之 (本社生産技術本部)

Seismic Retrofit Method for Wall Type Pier with Hoop Panels

Atsushi Takeda Koichi Tanaka Naoyuki Kita

Abstract

A new retrofitting system for wall type bridge pier was developed. A significant feature of this system is the ability to efficiently confine the pier wall using the hoop tension of multi-cylindrical steel panels called "Hoop Panels" with fewer tie-bolts than the ordinary steel jacketing method. The space formed by hoop panels is filled by normal concrete. When flexural strengthening is required, additional longitudinal rebars are set in the additional concrete, and dimples are clipped to the side surfaces of the existing pier to transfer the shear between the new and existing concrete. In this study lateral loading tests were carried out using the flexural strengthened specimen and shear strengthened specimens. As a result, the availability of this system and good ductility performance were proven, and a calculate method for the shear capacity was proposed.

概 要

既設RC壁式橋脚の耐震補強は、既設断面が扁平であることから鋼板やRCで巻立てるだけでなく、断面貫通型の鋼材(中間貫通材)が必要となるが、中間貫通材が施工性やコストの面で課題となっていた。そこで、躯体の拘束効果を高めることで中間貫通材の本数を低減し、さらに優れた施工性を有する方法として、フープパネル工法を考案した。本工法は、分割した曲面状鋼板(フープパネル)を中間貫通材(貫通PC鋼棒)で躯体に取付け、既設コンクリートとの隙間にコンクリートを充填するものである。曲げ補強が必要な際は、既設躯体側面にディンプル(窪み)を切削成形して新旧コンクリートの一体化を図るとともに、新設コンクリート内部に曲げ補強用鉄筋を設置する。本論文では、曲げ補強を行った試験体およびせん断補強を行った試験体それぞれに対して、正負交番載荷実験を行った結果を示した。実験の結果から、本工法の成立性、良好な変形性能、およびせん断耐力の算定法について明らかとすることができた。

1. はじめに

各種の土木構造物は、1995年兵庫県南部地震において 大きな損傷が発生して以来、耐震補強が進められている。 耐震補強は、現場条件に加えて既設構造物の特性に合わ せて設計・施工を行うため、様々な制約がある場合が多 い、そのため、あらゆる場合に適用可能な耐震補強工法 はなく、様々な耐震補強工法が開発されている。

例えば、鉄道高架橋柱の補強には、一般に鋼板巻立て 工法やコンクリート巻立て工法が標準的な方法であるが、 狭隘部において人力のみで施工するために、鋼製パネル による耐震補強工法¹⁾が開発されている。さらに、より 高い要求性能を満たすため、高架橋の倒壊だけでなく応 答変位を低減することを目的とした、圧縮型ダンパー・ ブレース²⁾が開発されている。また、基礎の補強に関し ても、一般的な増し杭工法だけでなく、フーチングの拡 幅を最小限としたシートパイル基礎³⁾などが開発されて いる。

このような中で, 既設RC壁式橋脚の耐震補強に関して

は、偏平な断面を持つ事から、鋼板やRCによる巻立てに加えて断面貫通型の鋼材(中間貫通材)が併用されるのが一般的である。しかし、中間貫通材のための削孔は、施工費用を増大させるとともに、既設の鉄筋を傷つける可

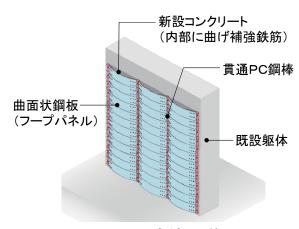


Fig. 1 フープパネル工法 Hoop Panels Method

1

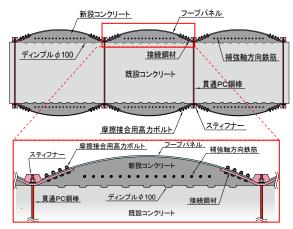


Fig. 2 補強断面 Cross Section of Retrofitting

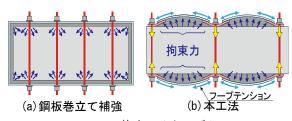


Fig. 3 拘束のメカニズム Mechanism of Confinement

能性があり、できる限り低減することが求められている。 一方、楕円形鋼板で巻立てて削孔を無くす方法も提案されている^{4)、5)}が、B/D(B:断面幅、D:断面高さ)が大きい壁式橋脚に対しては、増し厚が増加し、空間利用上の問題が生じる。

そこで著者らは、躯体の拘束効率を上げるとともに中間貫通材のための削孔本数を減少させ、さらに簡便な施工を行える工法としてFig. 1に示す、フープパネル工法を考案した。

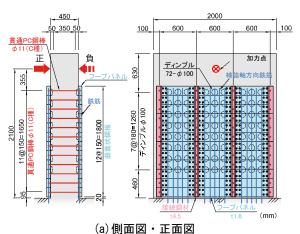
本論文は、本工法の有効性を確認することを目的に実施した正負交番水平載荷実験の結果を示すものである。 載荷実験は、曲げ補強を行った試験体およびせん断補強を行った試験体に対して行い、前者の実験(以下、曲げ補強実験と称す)に関しては耐力および変形性能に着目し、後者の実験(以下、せん断補強実験と称す)に関してはせん断破壊耐力およびせん断破壊性状に着目した。

2. 工法概要

本工法は曲面状鋼板(フープパネル)を中間貫通材(貫通PC鋼棒)で躯体に取付け、既設コンクリートとの隙間にコンクリートを充填するものである。曲げ補強が必要な際は、既設躯体側面にディンプル(窪み)を切削成形して新旧コンクリートの一体化を図る⁶とともに、新設コンクリート内部に曲げ補強用鉄筋を設置する。

著者らは、文献^{7)、8)}において、同様の補強工法を示しているが、曲面状鋼板を水平方向に連続させて1枚の鋼板を曲げ加工して製作することとしたため、以下のような

Photo 1 ディンプルの施工と出来形 Working and Completed Shape of Dimple


課題があった。

- 1) 曲面状鋼板の中間貫通材固定箇所は、局所的な曲 げが発生し弱点となる。その結果、この局所的な曲 げが、変形性能の決定要因となっていた。
- 2) 大規模な橋脚においては鋼板が大きくなるため、 施工性において改善の余地があった。
- 3) 中間貫通材の位置に関して調整の余地がないため、 曲面状鋼板の加工は削孔終了後とせざるを得なかっ た

本工法では、Fig. 2の断面図に示す通り、円弧状の曲面 状鋼板(フープパネル)と貫通PC鋼棒位置の接続鋼材を 別部材とした。接続鋼材は厚肉化するとともにスティフ ナーを設けることで、貫通PC鋼棒固定箇所での局所的な 曲げに抵抗できるようにした。フープパネルと接続鋼材 は分離することで可搬性を向上させるとともに、その接 合を摩擦接合とすることにより、貫通PC鋼棒位置の施工 誤差に対応可能な余地を設けた。また、現場溶接が不要 であるため溶融亜鉛メッキを用いるなど高耐久化が容易 であるという特長も有する。

本工法と標準的な耐震補強工法である鋼板巻立て工法による橋脚躯体への拘束のメカニズムをFig. 3に示す。鋼板巻立て工法、本工法とも中間貫通材反力が鋼板を介して既設コンクリートに伝達されるが、鋼板巻立て工法では導入される拘束力が中間貫通材位置と隅部に集中するため、橋脚幅全体に拘束を与えることが難しい。また、中間貫通材位置の鋼板が局部曲げを受けるため、鋼板を有効に使うことができない。これに対し、本工法では、拘束力がフープパネルの円周方向のフープテンションを介して新設コンクリートに導入されるため、橋脚幅全体に拘束力が伝達され、結果的に貫通PC鋼棒の水平方向間隔を大きくすることができる。

新旧コンクリートの界面に設けるディンプルは、Photo 1に示す通り、特殊ビットを用いてコアドリルにより旧コンクリートに凹面(ディンプル)を設け、新設コンクリートがディンプルに充填されることによりせん断伝達を行うものである⁶。ディンプル1個当たりのせん断伝達性能が明らかであれば、必要なせん断力に対してディンプルの個数を設計することができ、個数およびディンプルの形状を管理することで容易に性能を担保することができ

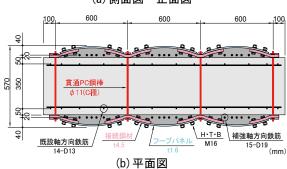


Fig. 4 曲げ補強試験体 Specimen of Flexural Strengthening

る。また、目粗し時に発生する騒音振動を低減できるとともに、はつりガラも発生しないため、環境に配慮した 工法ということができる。なお、ディンプルによるせん 断伝達は、フープパネル工法以外の曲げ補強工法におい ても適用することが可能である。

3. 曲げ補強実験

3.1 実験方法

3.1.1 試験体 試験体は1体であり、実構造物の1/5 程度のスケールを想定してFig. 4に示す寸法とした。既設部分は、軸方向鉄筋比0.40%、せん断補強筋なしであり、実在する橋脚を参考に配筋を設定した。補強後の軸方向鉄筋比は1.36%、せん断補強筋比0.10%(同じ降伏軸力となるSD345に換算すると0.30%相当)まで高めている。補強軸方向鉄筋は、フーチング上端位置においてフーチング内に定着された鉄筋と機械式継手により接合することで確実に定着することとした。

新旧コンクリートー体化用のディンプルは、文献⁶⁾に示される耐力算定法を用いて、ずれせん断破壊が生じないように片面あたり72個と定めた。大きさは、実大と同様の直径 φ 100mm、深さ30mmである。配置は、基部1D 区間以外に均等とした。基部1D区間に配置していない理由は、ずれ変形が生じにくい基部周辺ではディンプルの性能を十分に発揮するのが困難であること、および塑性ヒンジ形成後にディンプルの性能が劣化する恐れがあることである。

Table 1 材料特性 Material Properties

a)鋼材

部位	サイズ	材質	降伏強度 (N/mm²)	引張強度 (N/mm ²)	ヤング係数 (kN/mm²)
既設 軸方向鉄筋	D13	SD345	382	567	196
補強 軸方向鉄筋	D19	SD345	396	581	193
貫通PC鋼棒	φ11	C種	1234	1307	207
フープパネル	t1.6	SPHC	256	365	203
接続鋼材	t4.5	SPHC	194	334	201

b) コンクリート

部位	圧縮強度 (N/mm²)	割裂強度 (N/mm²)	ヤング係数 (kN/mm²)
既設躯体	23.2	2.26	24.0
補強部	37.8	2.57	25.8

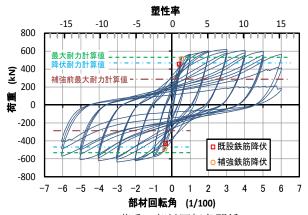


Fig. 5 荷重一部材回転角関係 Load-Rotation Relationship

基部においては、フーチング上面と補強部分の間に高さ20mmの隙間を設け、新設コンクリートが圧縮を負担しないようにした。これは、新設コンクリートの圧縮に対してディンプル個数の設計を行うとディンプル数が過大となるにも関わらず、新設コンクリート圧縮負担による水平耐力増加が大きくはないためである。

フープパネルや接続鋼材は曲げ負担を期待しないため、鉛直方向には連続させていない.フープパネルは、高さ150mmごとに分割した。接続鋼材は、フープパネル3段毎に分割する構成(高さ450mm)を基本としたが、接続鋼材の曲げ負担によるひび割れの局所化を防ぐため、基部1D範囲のみはフープパネルと同じ高さ(高さ=150mm)で分割した。

フープパネルと接続鋼材は、摩擦接合用高力ボルト F10T(M16)を用いて、摩擦接合した。ボルト本数は、フ ープパネルの引張破断に対して設計した。

貫通PC鋼棒は、既設コンクリートを打設する前に埋込み、接続鋼材取付け時に人力により緩まない程度に締め付けた。積極的なプレストレス導入は行っていない。

試験体材料はTable 1に示す通りである。中間貫通材は本数を低減するためにPC鋼棒とした。フープパネルおよび接続鋼材はSS400材相当として、SPHC材を用いた。既

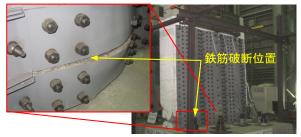


Photo 2 最終破壊状態 Final State

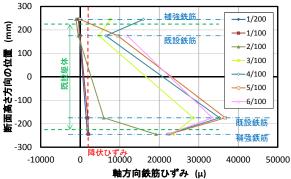


Fig. 6 断面内の軸方向鉄筋ひずみ分布 Strain Distribution of Longitudinal Rebar

設躯体のコンクリートは比較的低い強度とした。新設コンクリートは,ディンプルのせん断強度を保証するため, 文献⁶に従い圧縮強度36N/mm²以上とした。

3.1.2 **載荷方法** 試験体天端を面外曲げが生じる方向へ水平に加力した。鉛直方向の軸力は与えていない。 載荷履歴は、部材回転角が $\pm 1/200$ 、 $\pm 1/100$ 、 $\pm 2/100$ 、 $\pm 3/100$ 、 $\pm 4/100$ 、 $\pm 5/100$ 、 $\pm 6/100$ となる各変位において3回ずつ繰返した。

3.2 実験結果

3.2.1 荷重部材回転角関係および破壊過程 Fig. 5 に荷重一部材回転角関係を示す。図中,既設軸方向鉄筋および新設軸方向鉄筋の降伏点は,各軸方向鉄筋の基部位置に張り付けたひずみゲージの値が降伏ひずみに達した点とした。最大耐力計算値,降伏耐力計算値および補強前最大耐力計算値は,平面保持の仮定を用いて算定する鉄道標準⁹⁾の計算方法に従って計算したものであるが,材料強度にはTable 1の実材料強度を用い,安全係数は1としている。また,上軸の塑性率は,既設軸方向鉄筋の降伏変位を基準とした。

部材回転角1/100のステップで、補強前最大耐力計算値を大きく超え、既設および補強軸方向鉄筋が降伏ひずみに至ったが、有効高さの小さい既設軸方向鉄筋のほうがわずかに早かった。

部材回転角2/100のステップでフープパネルは降伏に至った。ただし、外見上も荷重一部材回転角関係上も大きな変化は見られなかった。

部材回転角3/100のステップで最大耐力に達した。その時の耐力(P=620kN)は計算値の1.17倍であり、本工法に

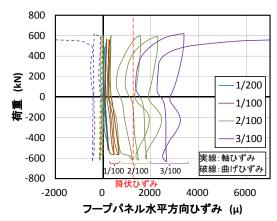


Fig. 7 フープパネル水平ひずみの履歴 Lateral Strain Hysteresis of Hoop Panels

より曲げ補強の計算耐力を確保可能であることが明らかとなった。部材回転角3/100の2ステップ目以降は、フープパネルの膨らみが顕著になるとともに徐々に耐力が低下した。

最終的に、部材回転角6/100の2サイクル目以降に、Photo 2に示す最下段フープパネル上端の高さ(下から170mm)で補強軸方向鉄筋の破断が順次生じて耐力が急激に低下した。フープパネルは大きくはらみだしたが、フープパネル、接続鋼材および貫通PC鋼棒の破断は生じなかった。

最終的な靱性率は、既設軸方向鉄筋の降伏を基準とした場合で15.2、補強軸方向鉄筋の降伏を基準とした場合で11.4であり、非常に良好な変形性能を得られることがわかった。

3.2.2 平面保持の検討 本実験においては、有効高さの大きい補強軸方向鉄筋に先んじて既設軸方向鉄筋が降伏している。このことは平面保持の仮定が完全には成立していないことを示している。そこで、平面保持に関して検討する。

Fig. 6に、各載荷ステップ1サイクル目のピーク時における高さ225mm位置断面における鉄筋ひずみの分布を示す。

両鉄筋が降伏に至る部材回転角1/100までは不完全な がらもおおむね平面保持が図れていることがわかる。

部材回転角3/100以降については、補強軸方向鉄筋のひずみが若干低いことがわかる。しかし、補強軸方向鉄筋のひずみは塑性硬化領域である $20000\,\mu$ 以上に達しており、新旧コンクリート界面のズレせん断力は確実に伝達できていると考えらえる。

また, 3.2.1節に示す通り,最大耐力に関しては,平面保持を仮定した計算値を上回っており,平面保持を仮定した耐力計算が可能であるといえる。

以上より、ディンプルにより新旧コンクリート面でせん断伝達させる方法は、若干のズレが発生することにより完全な平面保持状態を実現することはできないものの、耐力計算においては平面保持を仮定することが可能である。

3.2.3 フープパネルの挙動 Fig. 7に最下段フープパネルの頂部における水平方向ひずみの履歴を示す。平面位置は、荷重が正の時に圧縮側となる面である。水平方向ひずみは、フープパネル外面に添付した曲げひずみゲージを用いて計測することで、軸ひずみと曲げひずみに分離した。

軸ひずみと曲げひずみを比較すると、曲げひずみは非常に小さく、ほぼ軸変形となっていることがわかる。従って、フープテンションにより軸力で抵抗させるという曲面状とした目的が達せられていることがわかる。

軸ひずみは、部材回転角2/100のステップの2サイクル 目以降、圧縮側となる時に軸ひずみが増加しているが、 軸方向鉄筋の座屈挙動のためと考えられる。

3.3 曲げ補強実験のまとめ

フープパネル工法により曲げ補強を行った壁式橋脚模型の正負交番水平載荷実験を行った。実験により,以下のことがわかった。

- 1) 本工法により、曲げ耐力を向上させ、良好な変形性能を得ることができる。
- 2) ディンプルを用いて新旧コンクリート界面のせん 断伝達を行うことが可能である。その際、耐力は平 面保持を仮定して算定することができる。
- 3) フープパネルにはフープテンションが働いており, 効率的な躯体拘束が可能である。

4. せん断補強実験

4.1 実験方法

4.1.1 試験体 試験体は2体であり、実構造物の1/5 程度のスケールを想定してTable 2およびFig. 8に示す諸元とした。実験パラメータは貫通PC鋼棒の量とし、 φ9. 2mm PC鋼棒(C種)の間隔を変更することで、2種類のせん断補強筋比とした。

既設部分の配筋において, せん断補強筋は配置しなか

った。軸方向鉄筋は曲げ破壊を避けるために異形PC鋼棒を用いた。新旧コンクリートの界面は、曲げ補強を行わないため、無処理とした。基部におけるフーチング上面と補強部分の間の隙間、フープパネルの分割、フープパネルと接続鋼材の接続、貫通PC鋼棒の締付けは3.1.1項に示す曲げ補強実験と同様である。

試験体材料はTable 3に示す通りである。中間貫通材は 実物と同様にPC鋼棒とした。フープパネルおよび接続鋼 材はSS400材相当として、SPCC材およびSPHC材を用い た。既設躯体のコンクリートは比較的低い強度とした。

4.1.2 **載荷方法** 試験体天端を面外せん断が生じる 方向へ水平に加力した。鉛直方向の軸力は与えていない。 載荷履歴は、部材回転角が±2/1000、±4/1000、±6/1000、 ±30/1000となる各変位において1回繰返した後、プッシュオーバーとした。

4.2 実験結果

4.2.1 荷重変位関係及び破壊過程 Fig. 9に荷重 - 変位関係を示す。図中に示す計算耐力は、トラス理論の

 Table 2
 せん断補強試験体諸元

 Properties of Specimen of Shear Strengthening

試験体 諸元 断面幅: В (mm) 2000 外形 断面高さ 450 D (mm) 寸法 有効断面高さ: 400 (mm) 1200 せん断スパン d (mm) 14本-D25 本数と直径: (-)引張 (SBPD1080/1230) 鉄筋 引張鉄筋比: 0.788 (%) p_t 4本- φ 9.2 本数と直径: (-)(SBPR1080/1230) ピッチ(平均) 113 225 (mm) 貫通 0.118 (%) 0.059 p_{u} 鋼棒 等価帯筋比* 0.368 0.185 p_{w} 降伏強度 1250 f_{wv} (N/mm² (N/mm^2) 拘束応力: 147.1 $p_w \times f_{wv}$

^{**:} 材料試験に基づいた値。

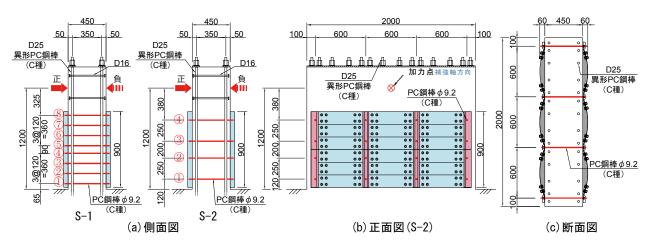
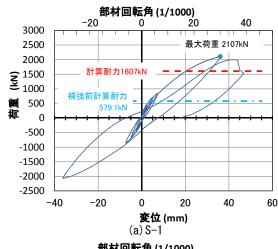


Fig. 8 せん断補強試験体 Specimen of Shear Strengthening

^{*:} SD345に強度換算した値。


Table 3 材料特性 Material Properties

a) 鋼材					
如仕	サイズ	材質	降伏強度	引張強度	ヤング係数
部位	サイス	材 負	(N/mm^2)	(N/mm^2)	(kN/mm ²)
既設	D25	C種	1080	1230	200
軸方向鉄筋*	1023	し作里	1000	1230	200
貫通PC鋼棒	φ9.2	C種	1250	1305	203
曲面状鋼板	t1.2	SPCC	206	325	196
拉体细针	+15	CDLIC	104	224	201

*既設軸方向鉄筋は材料試験を行っていないため規格値

b) コンクリート

試験体	S-	-1	S-2		
部位	圧縮強度	ヤング係数	圧縮強度	ヤング係数	
	(N/mm^2)	(kN/mm^2)	(N/mm^2)	(kN/mm ²)	
既設躯体	26.9	-	27.0	24.1	
補強部	42.9	-	43.1	25.9	

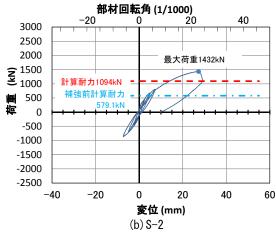
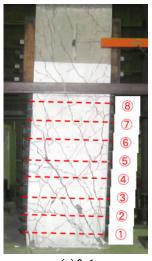
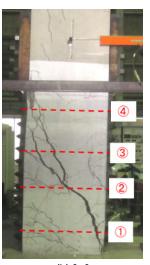




Fig. 9 荷重一変位関係 Load-Displacement Relationship

仮定を用いて算定する鉄道標準⁹⁾の計算方法に従って計算したものであるが、材料強度にはTable 3の実材料強度を用い、安全係数は1としている。新設コンクリート断面は考慮していない。また、せん断補強鉄筋(貫通PC鋼棒)に関しては強度の上限を考慮せず実材料強度を用いている。

(a) S-1 (b) S-2 Photo 3 最終破壊状態 Final State

S-1試験体は、部材回転角2/1000 (P=463kN)のステップで曲げひび割れが生じた。部材回転角4/1000のステップ (P=697kN)で部材軸から45°程度のせん断ひび割れが生じるとともに、貫通PC鋼材のひずみも大きくなっていった。部材回転角6/1000 (P=846kN)を超えて、荷重が上昇するとともに、部材軸との角度が小さいひび割れが増加していったが、部材回転角+30/1000 (P=2107kN) においてもせん断破壊には至らなかった。ただし、③~⑥(位置はFig. 8参照)の4段の貫通PC鋼棒は降伏に至っていた。その後、負側も同変位まで載荷したのち、正側載荷を行った際に、部材回転角+30/1000のステップで計測された荷重(P=2107kN)まで至らずに、荷重P=1999kNで③~⑥の4段の貫通PC鋼棒が破断して荷重が急落した。最大荷重は、せん断耐力計算値の1.31倍であった。

S-2試験体は、部材回転角2/1000(P=452kN)のステップで曲げひび割れが生じた。部材回転角4/1000のステップ(P=673kN)で部材軸から45°程度のせん断ひび割れが生じるとともに、貫通PC鋼材のひずみも大きくなっていった。部材回転角6/1000(P=846kN)を超えて、荷重が上昇するとともに、部材軸との角度が小さいひび割れが生じて45°程度のひび割れと一体となり、荷重P=1432kNの際に、②、③の2段の貫通PC鋼棒が破断して荷重が急落した。最大荷重は、せん断耐力計算値の1.31倍であった。

最終的に降伏に達している貫通PC鋼棒の段数に貫通PC鋼棒平均間隔を乗じると、いずれも450mmとなる。従って、45°のひび割れを想定して有効なせん断補強筋範囲をz=347mm(z:圧縮応力の合力位置から引張鋼材の図心までの距離で一般にd/1.15)とする鉄道標準⁹⁾のせん断耐力式よりも広い範囲の貫通PC鋼棒が有効となっていることがわかる。

また、貫通PC鋼棒ひずみは降伏ひずみを超え、何本かは破断まで達しているため、貫通PC鋼棒が負担するせん断耐力の算定において、貫通PC鋼棒の降伏強度を用いて算定することは合理的である。

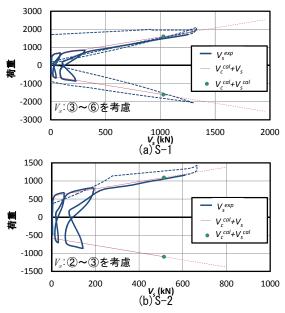


Fig. 10 貫通 PC 鋼棒の負担せん断力と荷重の関係 *V* by PC - Load Relationship

Photo 3に最終破壊状況を示す。写真中に示している破線は貫通PC鋼棒の位置を示している。ひび割れ性状は、せん断補強筋量の多いS-1試験体のほうが分散して発生しており、通常のRC構造と同様の傾向が見られた。

4.2.2 貫通PC鋼棒およびコンクリートの負担せん断力

前項で示した降伏に至った貫通PC鋼棒(S-1試験体 で3~6, S-2試験体で2~3)の引張力の合計を貫通PC 鋼棒負担せん断力 V^{exp} とした時の,貫通PC鋼棒負担せん 断力Vexpと荷重の関係をFig. 10に示す。貫通PC鋼棒の引 張力は計測したひずみに断面積とTable 3に示すヤング 係数をかけて算定した。ただし、弾性を仮定しているた め、破線で示している貫通PC鋼棒降伏以降の挙動は実際 の負担せん断力とは異なっている。図には、合わせて、 せん断補強鋼材を用いない棒部材の設計せん断耐力の計 算値 V_c^{cal} に横軸を足した V_c^{cal} + V_s の関係も示し、せん断耐 力の計算値 $V_c^{cal}+V_c^{cal}$ にマーキングをした。これは、せん 断ひび割れ発生まではコンクリートがせん断力を負担し, それ以上のせん断力は貫通PC鋼棒が負担すると考える 関係を表している。計算値はすべて、Table 3実材料強度 を用い安全係数は1として鉄道標準9)に従って算定した。 いずれの試験体においても、Vexpが大きくなりだす時 の荷重は $V_c^{cal}+V_s$ のy切片と一致しており、せん断ひび割 れ耐力は,鉄道標準⁹⁾のせん断補強鋼材を用いない棒部 材の設計せん断耐力 V_c^{cal} を用いて算定可能であることが わかる。

破線で示された領域を除くと、いずれの試験体においても、荷重は $V_c^{cal}+V_s$ の線に沿って上昇しており、ひび割れ後のコンクリート負担せん断耐力 V_c の劣化はほとんど見られないことがわかる。鉄道標準 9 においては、「極めて高強度の鉄筋をせん断補強筋として使用すると、せん断破壊時の斜めひび割れ幅が過大になり、ひび割れ面

における骨材の噛み合いや引張鉄筋のダウエルアクション等によって抵抗するせん断耐力が低下することがある」ことから、設計に用いるせん断補強筋の強度には上限を設けることが規定されている。しかし、本工法では、フープパネルにより断面全体を確実に拘束することから、実験で使用したPC鋼棒の降伏強度までであれば、ひび割れ幅の増大によるせん断耐力の低減は考慮する必要がないものと考えられる。

4.3 せん断補強実験のまとめ

フープパネル工法によりせん断補強を行った壁式橋脚 模型の正負交番水平載荷実験を行った。実験により,以 下のことがわかった。

- 1) 本工法により、せん断耐力を向上させることが可能である。
- 2) 本工法によりせん断補強した場合のせん断耐力は, 鉄道標準⁹⁾に記載されている梁部材のせん断耐力算 定法により,安全側に算定することが可能である。 その際,貫通PC鋼棒の降伏強度について,実験で使 用した範囲であれば,低減する必要はない。

5. まとめ

フープパネル工法による壁式橋脚の耐震補強方法を考案した。本論文では、曲げ補強を行った試験体およびせん断補強を行った試験体それぞれに対して、正負交番載荷実験を行った結果を示した。実験の結果から、本工法の成立性、良好な変形性能、およびせん断耐力の算定法について確認することができた。

今後は、変形性能や構造細目などについても設計法を まとめ、実用に供していく予定である。

謝辞

本研究は、(公財)鉄道総合技術研究所との共同研究における成果を示したものです.関係各位に深謝致します。

参考文献

- 1) 岡野素之,伊藤克也,渡辺哲,松田隆:鋼製パネルによるRC柱の耐震補強工法の開発,大林組技術研究所報,No.70,2006.12
- 2) 吉田幸司,喜多直之,岡野素之,関雅樹:圧縮型鋼製:ダンパー・ブレースによるRCラーメン高架橋の耐震補強工法,構造工学論文集Vol.50(1),pp.899-902.2004.3
- 3) 樋口俊一, 田中浩一, 神田政幸, 西岡英俊:シート パイル基礎の耐震性能に関する実験的研究, 土木学 会論文集A, Vol. 64, No. 4, pp.665-677, 2008.11
- 4) Pristley, M.J.N. Seible, F. and Calvi, G.M.: Seismic Design and Retrofit of Bridges, John Willey & Sons, Inc.,

- pp.267-273,585-595, 1996.3
- 5) 井ヶ瀬良則:壁式橋脚の楕円巻立て補強に対する地 震時保有耐力法の適用,第1回地震時保有耐力法に基 づく橋梁の耐震設計に関するシンポジウム論文集, pp.89-92,1998.1
- 6) 武田篤史,田中浩一,岡本大,谷村幸裕:ディンプルによる新旧コンクリート間のせん断伝達性能,コンクリート工学年次論文集,Vol.34,2012.6
- 7) 大内一, 田中浩一: 曲面鋼製セグメントによる壁式 橋脚の耐震補強実験, 土木学会年次学術講演会講演 概要集V, Vol.51, pp. 1068-1069, 1996.9
- 8) 武田篤史,田中浩一,大内一:曲面状鋼製セグメントにより耐震補強された壁式橋脚の靭性評価法,コンクリート工学論文集,第10巻第2号,pp.29-42,1999.5
- 9) 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説 コンクリート構造物, 丸善, 2004.4