化学イメージングセンサを用いたベントナイト間隙水の pH測定手法の開発

木 村 志 照 三 好 悟 (本社技術本部長室)

Development of pH Measurement Method of Pore Water in Bentonite Using Chemical Imaging-Sensor

Yukinobu Kimura Satoru Miyoshi

Abstract

In radioactive waste disposal, the expected decrease in the ability of bentonite is a concern. This is because bentonite might alter the chemistry of the cation exchange and cause dissolution with the high alkaline leaching from the cementitious materials. Although pH is an important index parameter, there is no method to continuously measure the pH change of bentonite pore water. Therefore, we focused on a chemical imaging sensor. To measure a stable electric potential under a high alkali content, we established a test measure method by using a platinum black electrode and prevented the deformation and shearing of the sensor due to the swelling pressure. Thus, we could continuously measure the pH change of bentonite pore water and confirm its applicability.

概 要

放射性廃棄物処分では、人工バリアであるベントナイトが、セメント系材料から浸出する高アルカリ水で、陽 イオン交換反応や溶解などにより化学変質し、本来期待されている能力が劣化することが懸念されている。pH は変質の重要なひとつの指標であるが、現状、ベントナイト間隙水のpH変化を連続的に計測する手法がない。 そこで我々は、pH計測手法のひとつであるLAPSを用いた化学イメージングセンサに着目し、ベントナイト間隙 水のpH変化の計測手法を検討した。高アルカリ環境下でも安定した電位を測定するために、参照電極を白金黒 電極にし、ベントナイトの膨潤圧によるセンサの変形や剪断を防止する測定手法を見出した。結果、ベントナイト 間隙水のpHの経時変化を計測することができ、その適用性を確認できた。

1. はじめに

原子力発電所の運転等で発生する廃棄物は放射性廃棄 物として取り扱われる。放射性廃棄物は、高レベル放射 性廃棄物(以下,HLW)と低レベル放射性廃棄物(以下, LLW)に分けられる。HLWは、原子力発電所で使われた 燃料(使用済み燃料)を再処理した後に残る放射能レベル の高い廃液(高レベル放射性廃液)やこれをガラス固化し たものである。LLWは、HLW以外の放射性廃棄物である。 また、再処理等で発生するHLW以外は、TRU廃棄物(以下, TRU)と呼ばれている¹⁾。

処分方法は、廃棄物のレベルに応じて異なる深度や 方法によって埋設処分されることが検討されている。 HLWおよびLLWの内、TRUについては、地下300mより深 い地層に埋設・隔離される(以下、地層処分)ことが法律に より定められている²⁾。また、LLWの内、放射能レベル が比較的高いものは、一般的な地下利用に対して十分に 余裕をもった50~100m程度の深度に埋設処分(以下、中 深度処分)されることが考えられている¹⁾。

Fig. 1に地層処分の概念の例³⁾を, Fig. 2に中深度処分の 概念の例⁴⁾を示す。この処分概念では, 緩衝材(地層処分) や低透水層(中深度処分)と呼ばれるベントナイトを主材 料とした層を構築することが検討されている。この層で は、低透水性と収着性により核種の移行を遅延する機能 を期待されている。他にセメント系材料が、処分坑道の 支保やプラグ、低拡散層や充填材として多量に使用する ことが検討されている。このため、セメント系材料から pH12~13の高アルカリ水が浸出し、ベントナイトが長期 間,高pH下に暴露される可能性が指摘されている。高pH 下においては、ベントナイトの主要な粘土鉱物であるス メクタイトが、溶解し、二次鉱物(C-S-Hゲルやゼオライ トなど5)の生成が室内試験でも認められている。これら の化学的要因による変化(以下,変質)により,本来期待さ れているバリア性能(低透水性, 収着性, 膨潤性など)の低 下を引き起こす。ベントナイトの変質程度を評価する上 で、ベントナイト間隙水の化学変化が重要である。その 変化を測定するひとつとしてpH測定が挙げられる⁶⁾。つ まり, 処分場操業時においては, pHがバリア層の健全性 のひとつの指標になると考えられる。

本報では、人工バリア材料であるベントナイトが、高 アルカリ浸出液の影響を受け、変質する程度を、モニタ リングする手法として、ベントナイト間隙水のpHの時間 的・空間的変化を連続計測する手法について,検討した 結果を報告する。

2. pH測定手法

2.1 ベントナイト間隙水のpH計測の既往研究

飽和圧密状態におけるベントナイト中の間隙水のpH の測定として、pH指示薬を含浸させた手法を用いた既往 研究がある5)6)。この手法は、pH指示薬を含浸させた樹 脂を圧密ベントナイト中に埋込み、溶液に一定期間接触 させている。その後、試料を解体し、その時の樹脂の呈 色状態を分光測色計で計測することにより,間隙水のpH を測定している。pH9.0に調整した塩水(0.35mol/dm³ NaCl)と蒸留水に50日間浸漬した場合では、pH7~9程度 となった。これは、非圧密状態のベントナイト平衡水よ りも低い。間隙水pHは、乾燥密度が高い場合、浸漬溶液 組成に依存し、かつ経時変化を伴うことが示されている 6)。また、乾燥密度1.6Mg/m3のベントナイトを同様な方 法で、低アルカリ性セメント浸出溶液(≒pH11)に浸漬さ せた試験をおこなっている。結果、1~3ヶ月程度では、 pH9程度であったが、6ヶ月後には、浸出溶液と同等の pH11程度となったことが示されている⁵⁾。

2.2 pH測定手法について

既往の研究では、対象試料を取り出し、その都度、試 料を破壊して間隙水のpHを測定しており、連続的に測定 できていない。大型の試験や、実際の処分場操業時のモ ニタリングを想定すると、都度試料を採取し、間隙水の pHを測定することは現実的に難しい。そのため、非破壊 で連続的にpHを計測する方法が必要となる。ここでは、 既往のpH測定手法の特徴を整理する。

ガラス電極法 ガラス電極法は最も広く普及 2.2.1 しているpH計の測定方法である。ガラス電極法は, pHガ ラス電極と比較電極との間で生じた電位差からpHを算 出する。ガラス電極のpHガラス応答膜の内側・外側にpH 差があると、pH差に比例した起電力が生じる。Nernstの 式より,理論上,25℃でpH差が1の場合,約59mVの起電 力が生じる。ガラス電極内には,通常pH7の内部標準液を 用いており,起電力差からpHに換算する⁷⁾。ただし,こ の測定手法は、土中の間隙水のpH測定には向いていない。 また標準液は徐々に減少するため、長期間の連続測定は 難しい。

2. 2. 2 ISFET ISFET(Ion Sensitive Field Effect Transistor, イオン感応性電界効果トランジスタ)は,1970年代に開発 された半導体を用いた測定手法で、今では市販され広ま っている。絶縁膜-半導体の上に測定対象(電解質)が接 触し, 電解質(Electrolyte) - 絶縁膜(Insulator) - 半導体 (Semiconductor)のEIS構造を持つ。絶縁膜にpH感応性物質 (Si₃N₄, Al₂O₃, Ta₂O₅など)を用い, 電解質のpHを電圧の 変化として測定する。測定部の小型化や形状の自由度の 向上が可能などの特長を有しており,食品分野などで,

接触型のpH計として利用されている。ただし、このISFET をアレイ化して二次元的にpH分布を測定することは困 難である⁸⁾。

2.2.3 LAPS LAPS(Light-Addressable Potentiometric Sensor)は1988年に発明された。Fig. 3に示すようにLAPS は絶縁体(Si₃N₄/SiO₂)/半導体(Si)からなる構造のSi₃N₄ 面上に電解質を載せ、pH測定を行う。シリコンと電解質 の間にバイアス電圧を印加した状態で、シリコン面の裏 面から光を照射すると、シリコン層内に光電流が生じる。 Fig. 4に示すように、光電流が電解質のpHに依存して定 量的にバイアス電圧方向にシフトする⁹⁾。このシフトを 求めることでpH測定が可能となる。光電流は、光照射さ れた近傍でのみ発生するため、Si3N4に接触する測定対象 の限られた部分のみのpH変化を測定することが可能で ある。その範囲は光照射面積によるため、照射スポット 径を小さくすることで,より細部のpH変化を測定するこ とも可能となる。また、照射位置を変えることで、2次元 的なpHの分布を測定することも可能となる。位置分解能 として5µm, pH分解能として0.01pHまで達成した報告も あるが,通常の半導体を使用する場合,100µm,0.1pHと 設定される⁹⁾。

3. 化学イメージングセンサを用いた土質材料の 間隙水のpH測定手法の検討

本目的および長期の耐久性に対して、2章で述べたpH 測定手法の内、ガラス電極は、基本的な測定対象は溶液 であり、耐久性にも乏しい。ISFETは、ある程度の間隙水 があれば、pHを測定することが可能と考えられる。しか し、測定は1センサにつき1点であり、二次元的なpH分布 を測定することは難しい。LAPSは、耐久性は不明だが、 光照射径によって測定範囲(精度)を任意に変えることが できる。また、1センサ内で光照射位置を変えることで複 数の測点のpHを測定でき、二次元的なpHの分布の測定が 可能である。以上から、LAPSを用いて、ベントナイトの 間隙水変化の測定手法を検討することとした。

3.1 化学イメージングセンサについて

LAPSによる測定では、光照射領域によって測定を定義 することが可能である。そのため、Fig. 5に示すように、 照射する光源を移動させることで、任意の点での測定が 可能となる。化学イメージングでは、この特性を利用し、 光源をセンサ基板裏面に対し、二次元に走査し、各点で 得られた光電流値のデータを二次元的にマッピングする ことでpHの分布を得る。

LAPSによる測定では、電流・電圧特性(以下,I-V特性) を測定し、バイアス電圧軸方向のシフト量からpHの変化 量を測定することができる。つまり、pH変化量の二次元 分布を測定する場合、全ての測定点において、I-V特性を 測定し、それぞれのバイアス電圧の変化量(Δ V)を、pH感 度の理論値である59.4mV/pHで除すことにより、pH変化 量(Δ pH)を求めることができる。

3.2 測定系の検討

ベントナイトへ高アルカリ水を浸透させ、ベントナイ ト間隙水のpH変化を測定するため、電気的・構造的な課 題について検討した。

3.2.1 参照電極 電位の基準として参照電極を用い る。汎用な参照電極にAg/AgCl電極がある。しかし、この 参照電極はガラス部分を有している。本試験では高アル カリの環境下(pH12~13)で使用することから、ガラスの 溶解により、正確な測定ができない可能性が考えられた。 そこで、参照電極として耐食性の高い白金黒電極の使用 を考えた。検討した結果、白金黒電極は、高アルカリ液 中で、測位電位が安定していたことから、本試験の参照 電極として適していると判断し、試験に用いることとし た。

3.2.2 光照射方法 これまでの化学イメージングセンサの計測では、数十mm角程度の空間を有するスペーサー板にセンサ基板を設置し、裏面から光を照射する。しかし、本試験で対象としているベントナイトは、膨潤性を有している。体積変化を許容しない剛性セルを使用した場合、膨潤圧により、センサ基板の剪断や、センサ

Fig. 4 pH変化に対する光電流-バイアス電圧曲線⁹⁾ Photocurrent Versus Bias Voltage for Various pH Values⁹⁾

Fig. 5 化学イメージング模式図 Pattern Diagram of Chemical Imaging

Fig. 6 パンチング板 Punching Board

基板が歪む恐れがある。剪断した場合は、測定自体がで きない。センサ基板に歪みが生じた場合は、測定値が変 化するため、正しいI-V特性を取得できず、pH変化を測定 することが困難である。このため、センサ基板をサポー トする必要があった。しかし、基板全面を金属板で覆う と、センサ基板そのものは保護されるが、光を照射する ことができず、測定ができない。そこで、Fig.6に示すよ うに、φ1mmの孔を21孔設けたパンチング板を作成した。 これにより、センサ基板を保護しつつ、裏側から光を照 射できるようになった。

3.3 試験方法

3.3.1 試験条件 Fig. 7に測定系を示す。Φ10mm, 厚さ1mmの試料部に,乾燥密度0.6Mg/m3のベントナイト (クニピアF,クニミネ工業社製)を充填し,試料の中心か ら0.3mol/dm³のNaOH水溶液を70kPaの窒素ガス圧で通水 した。排水は,上部周辺部に開けた孔より回収した。な お,化学イメージングセンサを用いて土試料の間隙を測 定した先行研究はないため,乾燥密度は,できるだけ間 隙水量が多く,かつある程度の止水性を有する条件とし た。

3.3.2 試験手順 ベントナイトを乾燥密度 0.6Mg/m³相当となるように、軽く突固めて充填した。ア ルカリ通水による間隙水pH変化量を測定するためには、 初期のI-V特性(バックグラウンド値)を取得する必要が ある。そのため、初期膨潤として、0.05mol/dm3のNaCl水 溶液を通水し、飽和させた。これは、ベントナイトが膨 潤しつつ, 且つセンサで測定可能な電解質溶液とするた めである。なお、実際の処分場での計測では、周辺岩盤 からの塩を含む地下水、またはベントナイト自体に含有 する可溶性塩由来の電解質により, バックグラウンド値 を取得することが期待される。バックグラウンド値を取 得後,通水液を0.3mol/dm³のNaOH水溶液に変え,窒素ガ スを70kPa前後となるように徐々に昇圧し,調整した。ア ルカリ通水後,40~100分間隔で,10分後から990分後ま で測定した。レーザー光は、パンチング板の孔に対し、 Fig. 8に示す順番(No.1→No.21)で照射し,得られたI-V特 性から, pH変化量を算出した。また, 浸出液を適宜回収 し、pH, Si濃度を測定した。ベントナイト試料は、試験 前後にX線回折分析を行い鉱物相の分析を行った。

3.4 試験結果

Fig.9に経時によるpH変化量のイメージングを, Fig.10に 中心から放射方向ごとのpH変化量の経時変化を, Fig.11 に浸出液のpHとSi濃度分析の結果を, Fig.12に試験前後 のベントナイトのX線回折分析プロファイルを示す。な お, Fig.9のイメージング図は次の方法で作成している。 各測点間は, 隣合う計測値の平均値を算出し, 得られた 値を基に,さらに隣合う値の平均値を算出することを5回 繰り返し, 測点間を補正した。

各測点とも試験開始から200分程度は、若干pHが低下 した。これは、ベントナイト中のモンモリロナイトによ るアルカリ緩衝や、少量含有している非晶質のSiO2鉱物 (主に玉髄)の溶解によるアルカリ消費などが発生したこ

とに起因すると推察され,理由は定かではないが,それ により,電位がややマイナスに変化したものと推察され る。その後,アルカリ浸透量が増加するにつれて,400分 程度からpH変化量が上昇し始めた。しかし,その傾向は, A~E方向全てにおいて,外側から中心に向かってpH変 化量が上昇する結果となった。これは,アルカリの注入 圧に対して,ベントナイトの膨潤圧が同程度以下であっ た可能性が考えられ,その結果,試料側部とカラム境界 面をアルカリが優先的に通水し,側部から中心部へアル カリ液が浸透したものと推察される。Fig.10より,試験 終了時(990分後)には,pH変化量は2程度となった。(NaCl で膨潤した)初期のベントナイトのpHは,およそ9.5-10程

大林組技術研究所報 No.83 化学イメージングセンサを用いたベントナイト間隙水のpH測定手法の開発

pH Change over time (A to E direction)

度であったことから990分後のpHは12程度と推察され、 また、アルカリ浸透の程度も試料全体でほぼ同じであっ た。Fig.11より, 浸透液のpH(測定3回目以降)は, およそ pH12程度と同等であった。このことから、化学イメージ

ングセンサでのベントナイト間隙水のpH変化量が妥当 であったと考えられる。なお, Fig. 12より試験前後での 結晶質鉱物相に変化はなかった。NaOH通水時間が短い ため、結晶性の鉱物を溶解させるほどまでの反応は生じ

Results of Analysis of Leaching Solution

ていなかったといえる。ただし、Fig. 11のSi濃度から溶液 のpHが上昇し、12程度となる過程において、少量ながら Siが検出されている。このことから、非晶質性のSiO2鉱物 や結晶性の低い玉髄などの溶解が生じていたと推察され る。以上より、化学イメージングセンサを用いることで、 連続的にアルカリの浸透によるベントナイト間隙水の pH変化を計測できることが明らかになった。

4. 今後の課題

本検討では、密度が小さく間隙水がある程度多い条件 かつ卓上型の測定装置で検討を行った。結果、ベントナ イト間隙水変化の計測に対し、LAPSを用いた化学イメー ジングセンサ適用性が確認できた。一方、実際の処分場 を想定すると、対象の人工バリア材が、ベントナイト混 合土で、密度が高い(乾燥密度で1.6Mg/m³以上)条件であ る。つまり、より間隙水が少ない条件であり、モニタリ ングの観点から、センサを人工バリア材内に埋め込んで 測定する必要があると予想される。そのため、今回の測 定方法を基に、今後の課題として、埋め込み可能な形状 のセンサ開発、間隙水が少ない条件でも測定可能とする ための測定感度の向上や長期耐久性など課題がある。こ れら課題を解決し、実処分場でのpHモニタリングに供す ることができるように研究開発を進めていく。

5. まとめ

測定原理としてLAPSを用いた化学イメージングセン サによる、アルカリの浸透によるベントナイト間隙水の pH変化を連続で測定する手法を検討した。結果、以下の ことが明らかになった。

- 参照電極として白金黒電極を用いることで高アルカ リ環境下でも安定して測定可能となった。
- パンチング板を用いることでベントナイトの膨潤圧 によるセンサ変形や剪断を防ぎ,同時に光を照射可能 となった。
- 3) 化学イメージングセンサを用いてベントナイト間隙 水の経時のpH変化を可視化することができた。

XRD Profile Before and After the Test

今後, さらに処分場での測定に適したセンサおよび手 法の開発を進めていく。

謝辞

本研究開発は、東北大学大学院工学研究科との共同研 究成果の一部である。共同で実施していただきました吉 信達夫教授,宮本浩一郎准教授,佐藤嵩浩氏(当時,修士 2年)に深謝致します。

参考文献

- 杤山修:放射性廃棄物処分の原則と基礎,公益財団法 人原子力環境整備促進・資金管理センター, pp.32-35, 2016.12
- 2) 特定放射性廃棄物の最終処分に関する法律,2000
- 3) 電事連(電機事業連合会):「原子力・エネルギー」図 面集2011(一部編集)
- 4) 原子力規制委員会:第2回廃炉に伴う放射性廃棄物の 規制に関する検討チーム会合資料2-1,原子力発電所 等の廃止措置及び運転に伴い発生する放射性廃棄物 の処分について,2015.2
- び、後貝武,他:圧縮ベントナイト間隙水のpH測定(Ⅲ)− 低アルカリ性セメント浸出溶液試験−,JNC TN8400 2000-025,2000.9
- 6) 小田治恵,他:圧密ベントナイト間隙水のpH測定(Ⅱ)
 -雰囲気制御下における樹脂埋め込み測定-,JNC
 TN8400 99-015, 1999.3
- HORIBA ホームページ、ガラス電極によるpH測定、
 http://www.horiba.com/jp/application/material-propertycharacterization/water-analysis/water-qualityelectrochemistry-instrumentation/the-story-of-ph-andwater-quality/the-basis-of-ph/measuring-ph-using-a-glasselectrode/>、参照2019-5-23
- 中尾基:シリコンエッチング技術を用いた半導体イメ ージセンサ,表面技術, Vol.51, No.9, pp.885-891, 2000
- 中尾基,他:高分解能半導体化学イメージングセンサ, 電気学会論文誌E, Vol.118, No.12, pp.584-589, 1998