中岡健一畑浩二

Estimation of Creep Parameter and Tunnel Excavation Analysis

Kenichi Nakaoka Koji Hata

Abstract

Previously, a creep model was developed to analyze the tunnel stability in a squeezing rock. However, setting the creep parameters was difficult. Measurement of the in-situ creep displacement was required to estimate the parameters. Therefore, we developed a borehole displacement meter to measure the changes in the diameter. Using this equipment, the creep displacements at three in-situ boreholes were measured. Next, the creep parameters were estimated by performing a fitting analysis of the displacements. Tunnel excavation analyses were conducted by the finite difference method using the creep parameters. The trends of the results were similar to those of the onsite measurements of the tunnel displacements. Therefore, it was determined that the above method of setting the creep parameters had potential in practical application.

概 要

膨張性地山の時間依存挙動を評価し、適切な支保工を設計することによって変状を防止するために、時間項 を持つ数値モデルであるクリープモデルが提案されている。このモデルの実務適用では、クリープパラメータの 設定が課題となっていた。そこで筆者らは、パラメータを適正かつ迅速に設定するため、現場で簡易に取り扱え るボーリング孔径変位計を開発した。この装置を3つのトンネル現場に用いた結果、いずれの現場のボーリング 孔からもクリープによる縮径が計測された。次に、計測結果を対象として円孔モデルによるフィッティング解析 を行うことにより、クリープパラメータを設定した。そして、施工過程を考慮した有限差分法によるトンネル掘 削解析を行い、現場のトンネル壁面変位や地山、支保工の変状を近似する結果が得られた。以上から、本研究で 構築したパラメータの設定方法は実用性があり、支保工の設計に適用できる可能性が高いと判断した。

1. はじめに

膨張性地山は、掘進を中断しても変位が増加し続け、 支保工に座屈や圧壊が生じる場合がある。そのような地 山の変形、支保工の応力を予測することができれば、対 策工や支保工の定量的な設計が可能になる。膨張性によ る変位を予測するために、時間項を持つ数値モデルとし て、クリープモデルが提案されている^(例えば1),2),3)。これら のモデルで解析を行う場合、時間依存性を表すクリープ パラメータを設定することが課題となっている。切羽を 観察すれば地山にはほとんど亀裂が含まれていることか ら、地山のクリープパラメータを評価するには、亀裂を 含まない岩石コアによる室内試験よりも、原位置におい て計測された結果を用いる方が望ましい。

猪熊らは原位置のボーリング孔に水で満たしたゴムチ ューブを挿入して孔壁に密着させると、水圧が上昇する ことから、地圧によってボーリング孔の直径(以下、ボー リング孔径)が縮小すると考えられること、その時間的変 化は岩石試験に見られるクリープに類似していることを 示した⁴⁾。そこで筆者らは、例えば、切羽前方に掘削され たボーリング孔径の変化を経時的に測ることができれば、 その結果はこれから掘る地山のクリープパラメータを設 定するために利用できると考えた。

本研究では、ボーリング孔の内空変位計を開発し、そ

の計測結果を用いてクリープパラメータを設定した。それらのパラメータを用いてトンネルの掘削解析を行い, 現場での壁面変位計測値と比較することにより,設定し たパラメータの妥当性について検証した。ここで用いる クリープモデル²は一次~三次クリープ,内部摩擦角と 粘着力による破壊規準,そしてひずみ軟化といった岩盤 の解析で扱われている挙動を一つのモデルで表現できる。 ここで,一次クリープは岩石が荷重を受けてから徐々に ひずみ速度が遅くなる段階,二次クリープは,一次クリ ープの後,ひずみ速度の低下が収束し,一定の速度が続 く段階である。三次クリープは最後にひずみ速度が加速 的に大きくなり破壊に到る段階である。

2. クリープモデル²⁾の概要

解析には、筆者らが開発した一次~三次クリープを一 連で解析できる数値モデル²⁾を適用する。クリープの進 行に抵抗する強度として、式(1)で表されるDrucker-Prager の破壊規準を用いる。

$$f = -\alpha I_1 + J_2 - \kappa \tag{1}$$

ここで,*I*,と*J*,は応力の第一,および第二不変量である。 *αとκ*はそれぞれ内部摩擦角と粘着力に対応する強度定 数である。本解析は、各要素についてリラクゼーション によるせん断応力の低下量をイタレーションごとに計算 し、応力を修正することにより、クリープを表現してい る。応力の緩和速度öは、式(2)によって表されるsの変化 速度であるsを用いて式(3)によって計算される。

$$\dot{s} = k \exp\left[qf + \left(\frac{s - a_{\rm v}}{\sqrt{2}b_{\rm n}}\right)^2\right]$$
(2)
$$\dot{\sigma} = \frac{6J_2 \dot{s}}{\sigma_{\rm ii}}$$
(3)

ここに、k, a_v , b_n , qはクリープパラメータである。sはクリープの進行を表し、式(2)から求められたsと時間 刻み Δt から増分 $\Delta s = s\Delta t$ を求め、次のステップの $s_{next}=s+\Delta s$ が求められる。sの初期値は0であり、単調増加する。

式(2)と式(3)から、応力の緩和速度ら、即ち、クリープ の進行速度はネービア数eのqf乗に比例する。せん断応力 が大きくなればfも大きくなり、クリープが急激に進み、 fが小さくなればクリープの進行が遅くなる。応力が一定、 即ち、fが一定であれば、s < a、の間はsが増加するほどsが 小さくなり、時間とともにクリープひずみ速度も低下す る。s = a、の時に式(2)の指数部の値が最も小さくなり、ひ ずみ速度も最も小さくなる。s > a、になればsの増加とと もにsが大きくなり、ひずみ速度は加速度的に大きくなり、 クリープ破壊に到る。本モデルは、クリープひずみの各 成分を計算するために、弾塑性モデルにおける塑性ひず みを計算する方法を用いている。塑性ポテンシャルに対 応する関数は、式(1)のaの代わりにクリープダイレタン シー角dとした式である。このパラメータにより、クリー プひずみに伴う体積の変化を考慮することができる²。

クリープが進み, せん断応力が低下して残留強度より も小さくなればクリープ破壊とみなし, 時間に依存しな い弾塑性モデルとする。残留応力は, 残留強度定数を適 用した式(1)の破壊規準による弾完全塑性モデルにより 求められる。式(1)の破壊規準のパラメータαと, Mohr-Coulomb破壊規準の内部摩擦角 φmとの関係は式(4)と式 (5)により表される。

$$\alpha = \frac{\sqrt{6}}{6} \tan \phi_{\rm d} \tag{4}$$

$$\phi_{\rm d} = \tan^{-1} \left(\frac{1}{\sqrt{2}} \frac{1 + \sin\phi_{\rm m}}{1 - \sin\phi_{\rm m}} \right) - \tan^{-1} \frac{1}{\sqrt{2}} \tag{5}$$

設定が必要なパラメータをTable 1に示す。以降,破壊前,および残留状態における式(1)に用いるαは, Mohr-Coulombの内部摩擦角φmに変換して記述する。表中のφ。 やφrを式(5)のφmに代入すれば,破壊前後のαが得られる。

3. クリープパラメータの設定方法

3.1 パラメータの設定手順

本研究では、ボーリング孔径を計測する装置を開発し、 得られた変位をクリープパラメータの設定に用いる。設 定の手順を以下に示す。

・クリープ試験を必要としないパラメータのうち, D, v,

ρ, φεを既存の方法によって設定する。本研究ではその 方法の一つとして, Hoek & Brownによる方法と文献に よる値を用いた。φrについては後述するように,破壊 後の試料の状況やφεを参考に設定した。φcはクリープ パラメータであるものの,クリープを考慮しない場合 の内部摩擦角として設定することが出来る。

- ・クリープパラメータのうち, *b*_n, *a*_v, *k*, *q*は従来から使 用している経験的なパラメータ²⁾を用いる。
- ・dはクリープに伴うダイレーション角であり,解析結果 に少なからず影響を及ぼすと考えるものの,影響度合 いの評価や設定方法については今後の課題である。本 研究ではd=0とする。
- ・ κcはクリープの速度を支配するパラメータであり、クリープ試験や計測の結果に基づいて設定する必要がある。本研究では孔内変位結果を対象としたフィッティング解析によって設定する。
- ・Krはクリープパラメータではないものの、破壊後の粘着力を設定することは容易ではなく、Keとともにフィッティング解析によって設定する。

3.2 孔内変位計の概要

本研究では、クリープパラメータを適切に設定するため、 ボーリング孔の直径の変化を計測できる孔内変位計を開 発した。Fig.1に孔内変位計システムを示す。図の左側に ある灰色の棒状のものが変位計本体で、長さは約1mであ る。本体後部に長さ1mのネジ付き塩ビ管をつぎ足しなが らボーリング孔に挿入していく。

Parameters for Creep Analy	S1S
項目	単位
変形係数 D	MPa
ポアソン比 v	-
密度 <i>ρ</i>	kg/m ³
クリープダイレタンシー角 <i>d</i>	-
クリープ粘着力κ。	MPa
クリープ内部摩擦角 φ c	0
クリープ係数 bn	-
クリープ係数 av	-
クリープ係数 k	1/min
クリープ係数 q	1/MPa
残留粘着力Kr	MPa
残留内部摩擦角 ∲r	0

Table 1 クリープ解析に必要なパラメータ

変位計本体 孔内カメラ

Schematic Diagram of Borehole Displacement Meter

Photo1に変位計本体とセンサー部を示す。変位計本体の前部と後部には、変位計の位置を孔の中心に保つようにするためのリング状に曲げられた帯状の鋼板(セントラライザー)が取り付けられており、中央部には変位センサーと孔内カメラが取り付けられている。想定した孔径の最小は「トンネルナビ[®]」に使用する標準ビット径65mmである。最大径については、現場でボーリング孔を観察すると、ビット径よりも1cm以上大きいことが多いことから、余裕を持たせて90mm程度とした。

Fig. 2にセンサー部の模式図を示す。センサーは厚さ 0.3mmのしずく状の鋼板(以下,鋼板)と,起歪体からなり, 鋼板の上下端が絶えず孔壁に接するように, 孔壁に押付 け力が生じるような仕様としている。

鋼板に接している孔壁に、孔径が縮小するような変位 が生じると、鋼板が上下から押しつぶされ、鋼板の先端 に取り付けられたスライダーが右側に移動し、起歪体が 変形する。孔壁の変位は起歪体の上下面に貼られたひず みゲージによって求められる。ひずみゲージを直接鋼板 には接着せず、起歪体を用いる構造は、センサー部のク リープが計測変位に及ぼす影響を小さくするための試行 錯誤による結果である。分解能は0.005~0.01mmであり、 デジタルノギスで計測しながら変位計に所定の変位を与 え、ひずみゲージの出力値から変位を求めるための校正 を行った。センサー部の曲率が大きくなるように、想定 している最小径(65mm)のアクリルパイプに挿入して恒 温室で試験を行ったところ、2日間で最大0.02mm程度の 影響が計測変位として認められた。ただし、本報告の原 位置試験による最も小さな変位でも0.2mmであり、セン サー部のクリープによる変位はこれに比べて小さい。そ のため、計測された変位の大部分は孔壁の変位と考える ことができ、検証解析を行う上では影響が小さいと考え る。しかし、センサー部のクリープは装置の精度を低下 させるため、さらに改善する必要があると考える。

Photo1に示すように、変位センサーの孔口側(図では右 側)には小型カメラと照明が取り付けられており、孔壁の 状況を確認しながら変位計を設置することが出来る。 Photo2に設置作業の状況を示す。

4. 孔内変位とパラメータの設定

4.1 孔内変位の計測結果

A, B, Cの3つのトンネルにて開発した変位計を用いて 計測を行った。トンネルAについては切羽面にボーリン グ孔を削孔した。トンネルBとCについては後述する解析 の断面位置における側壁に削孔した。いずれも水平方向 で,削孔完了後,できるだけ速やかに計測を開始した。 変位計を設置する位置は、トンネル掘削によるゆるみ領 域や地圧の変化が大きい領域の外側となるよう、トンネ ルから離す必要がある。ここでは、ひずみ軟化解析など により、支保工が破壊する結果となった場合でも、破壊 領域がトンネル直径(約10m)以上になることはほとんど ないといった経験から,計測器の設置位置は孔口から 10m程度とした。計測器は二つつなげて挿入するため, 計測点は2地点となり,装置の寸法から両地点の距離,す なわち,計測間隔は1mとなる。

Fig. 3~Fig. 5に各トンネルで計測した変位の時刻歴を 示す。Table 2に各計測地点の条件を示す。各図ではボー リング孔が計測点に到達した時点をr=0とした。各変位と も、時間とともに増加する傾向がみられる。トンネルBの データを除いて、トンネルごとの変位の方向(水平,鉛直) と位置(奥側,手前に設置された計測器)によって、ばらつ きが見られる。その原因としては地圧や地山物性の異方 性,不均質性などが考えられるが、いずれが支配的な原 因となっているかは判断できない。

トンネルAのグラフには変位計に取り付けた温度セン サーによる孔内の温度も示している。計測された変位は

Photo 1 変位計の本体 (上) とセンサー部 (下) Main Body (above) and a Part of Sensor (below)

Schematic Diagram of Displacement Sensor

Photo 2 孔内変位計の設置状況 Installation of Borehole Displacement Meter

温度変化と同じ周期で、変動しており、温度による影響 を受けていることが分かる。この変動は、計測された変 位に比べて小さいため、クリープ係数の評価に用いるう えで問題ないと判断したものの、温度補正のために、温 度による影響を把握することは今後の課題である。

トンネルCの結果には、ステップ状に変位が増加する 傾向が見られる。この原因についても既存の亀裂のずれ がステップ状に進むためなのか、新たな亀裂ができるこ とによるのかは判断できない。

各トンネルの計測壁面変位の平均値(天端沈下量とト ンネル左右壁面の相対変位の和を3で除した値)と最終的 な孔内平均変位は以下のようであり,孔内変位が大きい ほど,トンネル掘削による変位も大きいことが分かる。

- ・トンネルA: 壁面変位9.7mm, 孔内変位0.33mm
- ・トンネルB: 壁面変位3.7mm, 孔内変位0.21mm
- ・トンネルC: 壁面変位380mm, 孔内変位0.88mm

トンネルA, Bにおいてもボーリング孔にクリープが生 じていることから,壁面変位が小さいトンネルにおいて も,クリープが発生している可能性がある。

4.2 解析用パラメータの設定

各トンネルの孔内変位計測を対象としてフィッティン グ解析を行うために, κεとκ以外のパラメータを以下の ように設定した。

変形係数Dは, Hoek & Brownによって提案されている GSF⁵ (Geological Strength Index)と一軸圧縮強さσωから求 める式(6)⁵を用いて設定した。

$$D(\text{MPa}) = 100\sqrt{\sigma_u} 10^{\frac{GSI-10}{40}}$$
 (6)

GSIは岩盤の亀裂の多さや風化の度合いから推定される値であり、切羽観察に基づいて設定した。

ポアソン比vと密度pは慣用値^{6),7)}を用いた。

クリープ内部摩擦角&は、トンネルAとトンネルBの岩 種については、HoekとBrownによってGSIとのから破壊包 絡線を求めるためのパラメータが示されている⁵⁾。ここ では、地山の密度と天端部の土被りから計算した土被り 圧における破壊包絡線の勾配を&とした。しかしながら、

Table 2 各トンネルの条件 Condition of each Tunnels

トンネル	А	В	С	
土被り (m)	38	61	123	
岩種	凝灰岩 泥岩	凝灰 角礫岩	蛇灰岩	
坑口からの距離 (m)	332	399	640	
切羽岩石強度 (MPa)	5 ^{a)}	17.5 ^{b)}	40.6 ^{c)}	
計測天端沈下量 (mm)	12	6	301	
計測水平変位 (mm)	17	5	837	

a) 針貫入試験などによる推定, b) 切羽観察シートから推定,c) 岩石の圧縮試験による

後述するフィッティング解析において、ここで設定し た んが大きすぎ、 κ。と κ を小さくしても計測された変位 を再現できなかった。そのため、 んを少しずつ小さく するフィッティング解析により設定した。トンネルC については母岩である蛇灰岩の破壊包絡線を求めるた めのパラメータが示されていないため、同じ岩種の岩

Measured Borehole Displacement (Tunnel A)

Fig. 4 孔内変位計測結果(トンネルB) Measured Borehole Displacement (Tunnel B)

Fig. 5 孔内変位計測結果(トンネルC) Measured Borehole Displacement (Tunnel C)

石の文献⁸による内部摩擦角を用いた。Fig. 6にHoekと Brownのパラメータによる破壊状態のモールの応力円と 破壊包絡線(勾配 ϕ)を示す。

*b*n, *a*v, *k*, *q*は3章で述べたように従来から用いている 値とし, ダイレタンシー角*d*は0とした。

残留内部摩擦角 φ_tの設定については、トンネルAでは 設定されたクリープ内部摩擦角 φ_cが29°と小さいことか ら、残留値はそれより大きく低下しないと考え、φ_t=φ_cと してフィッティング解析を行った。トンネルBについて は、トンネルAと同じ理由でφ_t=φ_cとしてフィッティング 解析を行った。その後、さらに、孔内変位に一致するよ うにφ_tを調整した。トンネルCでは切羽付近の岩石試料の 破壊面は光沢のあるような滑らかな状態であり蛇紋岩の 特徴を呈した。これより、同トンネルのφ_tは低いものと 考え、φ_t=0°とした。

クリープ粘着力 κ は各ケースとも、フィッティング解 析により設定した。

各トンネルとも、地山の側圧係数は1とした。

4.3 フィッティング解析の方法

フィッティング解析には、ボーリング孔をモデル化した円筒座標系による有限要素法を用いた。このモデルでは、地盤の変位を円孔の半径方向の単自由度で表現できるため、多くの繰返し計算を要するクリープ解析においても、短時間で結果が得られる。フィッティング解析の条件をTable 3に示す。ここで、ボーリング孔径について、孔口付近ではあるが、仕上がりの口径はビット径よりも1cm程度、あるいは、それ以上大きくなっていることが多い。そのため、用いたビット径65mmから、ボーリング孔径を80mmとした。

Fig.7に,計測された各ボーリング孔における平均孔内 変位と,フィッティング解析の結果を示す。フィッティ ングの対象は,変位計から得られた水平,鉛直方向の変 位をトンネルごとに平均したものとした。解析結果は計 測開始時点からの増分変位を表している。図より各計測 変位とフィッティング解析の結果はよく一致しており, クリープモデルはこれらの岩盤に適用できると判断した。 以上から設定したパラメータをTable 4に示す。表中のκ は式(2)の指数のfに含まれており,κ=-∞~∞に対してf は連続的な正値となるため,κcの値は岩盤の強度によっ て正と負に関わりなく設定することになる。

5. 検証解析

5.1 解析方法

4章で設定したパラメータを用いてトンネル掘削解析 を行い、現場で計測された壁面変位と比較する。解析方 法は有限差分法とし、二次元平面ひずみ状態の解析を行 う。解析コードは三次元で構築されているため、トンネ ル軸方向に厚さ1mの1層によってモデル化し、すべての 節点の軸方向変位を固定する。

Mohr's Stress Circle Based on Hoek & Brown and Failure Envelope (Tunnel A)

Table 3 フィッティング解析の条件 Condition for Fitting Analysis

項目	内容
解析方法	有限要素法
モデル形状	円筒モデル (単自由度)
モデル化領域	74ø (ø: ボーリング孔径80mm)
メッシュ分割	502要素, 孔に近いほど要素を薄くした
境界条件	モデル外周にて固定

5.2 支保工のモデル化

吹付けコンクリートは弾完全塑性体のソリッド要素で モデル化する。降伏応力に達した後は強度が低下するひ ずみ軟化モデルとする。Table 5に吹付けコンクリートの 物性値を示す。強度定数は一軸圧縮強さが設計基準強度 である18MPaとなるように設定した。また、弾性係数を 時間とともに高めていくことにより、吹付けコンクリー トの硬化を考慮する。材齢と弾性係数の関係は文献値⁹ を用いた。Fig. 8に材齢とヤング率の関係を示す。

ロックボルトは曲げ剛性を持たないトラス要素とする。 軸力は耐力に達すると一定となり、伸びが24%¹⁰⁾を超え ると破断するものとし、軸力を0にする。

鋼製支保工は吹付けコンクリートと同じ厚さ(各トン ネルとも吹付け厚15cm)を持つソリッド要素としてモデ ル化する。その際,モデル上の断面積と弾性係数の積が, 設計上の鋼製支保工と等しくなるように,弾性係数を調 整する。材料モデルは弾完全塑性体とし,圧縮部材とな ることから破断は考慮しない。

5.3 解析ステップ

本解析は二次元モデルを用いるため、切羽の進行に伴 う地山の掘削応力の変化は、解放率の変化を逐次与えて 考慮する。現場の施工サイクルを忠実にモデル化し解析 ステップに反映した。解析断面から切羽までの距離と、 掘削解放率の関係は、三次元解析によって求められた切 羽からの距離と内空変位の関係[®]を参考にした。ここで、 解放率は、その時点で掘削により解放される地盤内応力 の全開放応力に対する比で、施工過程(三次元効果など) を二次元でモデル化する場合に用いられる[®]。

5.4 解析モデル

Fig. 9とFig. 10にトンネルAを例として解析モデルを示 す。モデル範囲は、トンネル上方は土被り厚さ、側方は

Rock Properties for Tunnel Excavation Analysis				
トンネル名	А	В	С	
GSI	25	45	30	
D (MPa)	530	3140	3580	
V	0.30	0.30	0.25	
ρ (g/cm ³)	2.04	2.14	2.40	
d	0	0	0	
кс (MPa)	0.0507	-0.219	0.592	
$\phi_{\rm c}$ (°)	24.0	32.7	24.0	
bn	40	40	40	
$a_{ m v}$	300	300	300	
k (1/min)	0.006	0.006	0.006	
Q	21	21	21	
к _r (MPa)	0.046	0	0.16	
$\phi_{\rm r}$ (°)	24.0	31.5	0	

Table 4 地山の解析用物性値

Fable 5	支保工の物性値
Prope	rties of Support

	Ε	С	ϕ	\mathcal{C}_{r}	Ør	d
	(GPa)	(MPa)	(°)	(MPa)	(°)	(°)
Sc	22	5.20	30	0	24	10
SS	200	118	0	118	0	0
RB	200	耐力 (k	N): トンオ	ペノレA: 13	7, BとC	: 177

Sc: 吹付けコンクリート, SS: 鋼製支保工, RB: ロックボルト c: 残留粘着力, q: 残留内部摩擦角, d: ダイレタンシー角

Relationship Between Material Age and Yung's Modulus

トンネル幅の7倍以上,下方は2倍以上とした。Table 6 にモデル化に用いた支保工の仕様などについて示す。

5.5 解析結果

5.5.1 岩盤変位 Fig. 11にトンネルAにおける天端 沈下量と側壁の水平変位の計測結果と解析結果を示す。 このケースより以降の時間は,上半を掘削した時点(解放 率40%)を0とした。現場で計測された変位は,上半

Table 6 モデル化に用いた支保工とトンネルの寸法

Dimension of Support and Tunnel for Analysis Model			
トンネル名	А	В	С
RB長 (m)	3	4	4
Sc厚さ (cm)	15	20	15
鋼製支保工	H125×125	H150×150	H125×125
	$\times 6.5 \times 9$	imes 7 imes 10	$\times 6.5 \times 9$
掘削幅 (m)	10.4	16.4	11.7
掘削高 (m)	8.2	9.3	7.4

Fig. 10 トンネル周辺部の解析モデル(トンネルA) Mesh Model near the Tunnel (Ttunnel A)

の掘削解放率が100%となるまで増加が速く,その後,遅 くなり,下半解放率が100%に達した後は収束傾向となっ ている。解析結果においても同じ傾向が見られ,計測結 果とよく対応している。また,解析結果のうち,弾性変 位は約半分で,クリープを考慮することにより計測結果 に近似できていることが分かる。

Fig. 12にトンネルBで計測された天端沈下量と側壁の 水平変位,および,解析結果を示す。解析結果,計測結 果ともに変位は1cm以下と小さく,地山は安定しており, 傾向は一致している。しかし,上半解放率が100%の時点 では,弾性変位の方が計測変位の2倍以上であることから, 変形係数を実際の値に比べて小さく評価している。変形 係数の設定に用いた岩石の一軸圧縮強さは,現場におい て,切羽観察結果を記録するために選定された一軸圧縮 強さのクラス(10~25MPa)の平均値であり,試験によっ て得られたものではない。そのため,実際の岩石の一軸 圧縮強さとの差異が生じたことが,計測値と乖離した原 因の一つとして考えられる。

Fig. 13にトンネルCで計測された天端沈下量と側壁水 平変位,および,解析結果を示す。計測結果,解析結果 とも、後述するように、 吹付けコンクリートが破壊する ような大きな変位が発生しており,近い傾向が得られた。 ただし、下半解放率100%よりも前の時間においては、解 析結果が計測結果よりも小さく、乖離が見られる。その 原因の一として、この解析では岩盤の摩擦角として、文 献による岩石コアの摩擦角を用いていることが挙げられ る。岩盤に亀裂が含まれ、それが岩盤の強度に影響する ものとし、亀裂面は上述した岩石コアの破壊面のように 滑らかであるとすれば,解析に用いた岩盤の内部摩擦角 は実際よりも高く見積もられている可能性がある。また, このように大きな変位が生じる場合では、岩盤内部でロ ックボルトと岩盤の付着が切れることもあると考える。 しかし,解析では、ロックボルトと地山は同じ節点を共 有しており,付着が切れることを表せないため,ロック ボルトによる変形抑制効果が過大になった可能性がある。 支保工の応力 Fig. 14にトンネルCの吹付け 5.5.2 コンクリートとロックボルトの降伏時間を色分けで、ロ ックボルトの破断位置〇印で示す。例えばロックボルト の赤色の部分は2日以内に塑性化したことを表わしてい る。吹付けコンクリートは5~10日の間に塑性化領域が発 生している。また、この図からは読み取れないが、ロッ クボルトの破断は7~12日の間に発生している。トンネル 工事においても、大きな変形によって吹付けコンクリー トの破壊が生じており,解析結果は現場の状況を近似し ている。ただし、ロックボルトについては岩盤内部の状 況を確認できないため、解析結果との比較ができない。

参考のためFig. 15に, Fig. 14に示す中央から5本目のロ ックボルトの各時間断面における軸力分布を示す。ロッ クボルトの塑性化した部分の軸力は,耐力である 0.176MNで一定となっている。また,力学的にはロック ボルト端部の軸力は0となるため,両端部の軸力が小さく

Fig. 11 トンネル壁面変位の比較(トンネルA) Comparison of Tunnel Wall Displacement (Tunnel A)

Fig. 12 トンネル壁面変位の比較(トンネルB) Comparison of Tunnel Wall Displacement (Tunnel B)

Fig. 13 トンネル壁面変位の比較(トンネルC) Comparison of Tunnel Wall Displacement (Tunnel C)

なる傾向が見られる。解析メッシュの大きさを十分細か くすれば,端部の軸力は0に近づく。15.25日後の結果で, 中間部で軸力が0となっているのは,ロックボルトが破断 したことによる。

6. まとめ

本研究によって得られた結果を以下にまとめる。

- ・ボーリング孔内変位計を開発し、3つの現場に適用した結果、各試験からクリープ変位が計測された。孔内変位が大きいと、トンネルの壁面変位も大きくなることから、孔内変位から地山の良否を判断できる可能性があることが分かった。
- ・孔内変位を対象にしたフィッティング解析と, Hoek & Brownの方法などの既存の方法を併用することに より,クリープ粘着力と,残留粘着力を設定できた。
- ・得られたパラメータを用いてトンネルの掘削解析を行い、現場計測変位と比較した結果、トンネルAでは解析、現場計測値とも1cm程度、トンネルBでは両者とも1cm以下と小さい変位となった。トンネルCでは支保工が破壊して大変形が発生することを予測でき、現場の状況、計測結果に近い傾向が得られた。

以上から、本研究で構築したパラメータの設定法、適 用したクリープモデルはトンネル安定性評価に適用でき る可能性が高いと判断した。今後の課題としては、本研 究では3現場にてパラメータの設定と検証解析を行った ものの、予測精度について議論するには実施例が足りな いと考える。また、フィッティング解析以外で設定する パラメータについても、実施数を増やし、適切な値を設 定するために、検証解析をフィードバックしていく必要 がある。さらに、室内試験の結果から、孔内変位計によ る計測変位には、鋼板のクリープに起因する変位が最大 で0.02mm程度含まれている可能性があると考える。その 問題に対し、変位計の改善を進める必要がある。

参考文献

- 大久保誠介:コンプライアンス可変型鋼製方程式の 解析的検討,資源・素材学会誌, Vol.108, No.8, pp.601-606, 1992. 12
- 中岡健一,畑浩二,蒋宇静:岩石のクリープとひずみ 軟化を評価する数値モデルの提案,土木学会論文集 F1(トンネル工学), Vol. 70, No.3(特集号), pp. I_43-I_56, 2015.4
- 3) 大槻英夫,田坂嘉章,鈴木康正,大森剛志,岸田潔, 足立紀尚:土・水連成ひずみ軟化型弾粘塑性モデルの 拡張と堆積軟岩空洞掘削問題への適用,第35岩盤力 学に関するシンポジウム講演論文集,pp.231-236, 2006.1
- 4) 猪熊明, 真下英人: 膨張性地山のトンネル土圧と変

位予測,地質と調査,1995.

- Hoek, E. and Brown, E. T. : Practical Estimates of Rock Mass Strength, Int. J. of Rock Mech. Min, Sci., Vol. 34, No. 8, pp. 1165-1186. 1997. 12
- 高速道路総合技術研究所:トンネル数値解析マニュ アル, pp. 3-25, 2017.
- 鉄道建設・運輸施設整備支援機構:山岳トンネル設 計施工標準・同解説, p.310, 2008.4
- 竹林亜夫,三上元弘,國村省吾,奥井裕三,呉旭:地 山の内部摩擦角に着目したトンネルの岩種分類の提 案,土木学会第58回年次学術講演会,VI-055, pp.109-110, 2003.9
- 9) 熊谷幸樹,松尾勝弥,平間昭信,川北眞嗣,佐野信夫: NATMにおける高強度吹付けコンクリートの適用と その支保工化について、トンネル工学研究論文・報 告集第8巻,報告(17), pp.181-186, 1998. 11
- 10) 茨城県建設技術管理センター: 鋼材試験, 年報, No. 23, pp. 57-65, 2014, http://www.ibakengi.or.jp/inspection/annualreport/docu ment/nenpo2014.pdf (2019年9月9日閲覧)