建材の反射指向特性を考慮した輝度シミュレーション手法の開発と計算事例

矢部周子 山口純一

大塚清敏

Development of a Luminance Simulation for Building Models

with Directional Reflection Surfaces

Chikako Yabe Jun-ichi Yamaguchi

Kiyotoshi Otsuka

Abstract

Brightness, comfort, atmosphere, and other relevant factors are required to create an appropriate indoor light environment. Lighting design based on luminance distributions is important because these factors can be evaluated through luminance distribution, which determines various visual effects. In general, in lighting environment simulations, all reflective surfaces are often assumed to be uniform diffuse surfaces; however, actual building materials have non-uniform directional reflection characteristics, which are different from this assumption. Therefore, we developed a luminance simulation that considers the directional reflection. We proposed a subdivision and correction method for calculating the ratio of luminous flux transmission in the simulation. It was shown that the simulation accuracy was improved when the proposed method was employed by comparing the calculated values with the measured values in the model experiment.

概 要

適切な室内光環境の創造のためには、明るさ、快適性、雰囲気、健康などの多角的な検討が必要となる。これ らを評価するためには、様々な視覚的効果を決定づける輝度分布が重要であり、輝度分布に基づく照明設計が求 められる。既往の光環境シミュレーション技術では、反射面を均等拡散面として仮定することが多いが、実際の 建材は不均一な指向性のある反射特性を持ち、仮定とは異なる。反射光に起因する輝度分布では、この反射指向 特性の影響が顕著に表れるため、輝度シミュレーションにおいて反射指向特性を考慮することが求められる。そ こで、反射指向特性を考慮した輝度シミュレーション手法を開発した。既往の計算式を示したうえで、光束伝達 の比率を計算する際の再分割手法と補正手法を新たに提案した。模型実験を行い測定値と計算値とを比較する ことで、本手法により反射指向特性を考慮した輝度シミュレーションの精度が向上することを示した。

1. はじめに

省エネルギー性とともに快適性や、ウェルネスの構成 要素のひとつである健康に配慮した適切な室内光環境の 創造が重要視されている。適切な光環境の要件である明 るさ,快適性,雰囲気などは人間の知覚・心理尺度とし て捉えられ、それらを評価するための物理指標としては 光の輝度分布が重要である1)。面に入射する光束の密度 を表す照度と比較して、ある地点から見たときの面の明 るさを表す輝度では、人の明るさの感じ方を評価できる。 Fig.1に示すのは、同一の内装仕様の室モデルにおいて天 井の照明配置を変えてシミュレーションを行った例であ る。a) と比較してb) の方が床面照度は低いが, 全体に明 るい印象を受ける。これは、視野内の多くを占める壁面 の輝度がb)の方が高いためである。また、黒い壁よりも 反射率が高い白い壁の方が、照度が同一であっても輝度 が高くなり明るい印象となる。このように、輝度分布は 明るさや視認性などの視覚的効果を決定づける。そのた め、輝度分布に基づく照明設計が重要であり、そのシミュ レーション技術が求められる。

輝度分布を高精度に計算するためには、不均一な建材 の反射特性(以下,反射指向特性)を考慮する必要があ る。対象点への入射光に着目する照度分布と比較して, 対象点での反射光に大きく左右される輝度分布には、反

a) 照明器具の中央配置 b) 照明器具の分散配置 (5灯:床面照度420lx) (4灯:床面照度290lx) Fig. 1 壁面輝度による印象の違い Different Impressions due to Wall Luminance 射指向特性の影響が直接性に現れるためである。

建築の内外装材には様々な反射性状の素材が使用され ている。反射率がおよそ同程度と明記されている建材で あっても、反射指向特性が異なる建材では反射性状が大 きく異なり(Fig. 2)、同一建材でも光の入射角度や見る角 度によって見え方は異なる(Fig. 3)。反射指向特性の違い は見え方や印象に大きな影響を与え、反射指向特性を考 慮したシミュレーションによって、その予測が可能とな る。

2. シミュレーションとその利用

反射指向特性を考慮した輝度シミュレーションの利用 場面としては,艶のある(指向性のある)建材の見え方 の予測・評価や,屋根材や壁面,太陽光パネルからの直 射日光の反射による不快な眩しさ(以下,グレア)の検 討等が挙げられる。

オフィスや集合住宅のエントランスでは石材等の艶の ある建材を採用した設計により高級感や特別感を演出す ることができる。反射指向特性の異なる内装材を選択す ることで、執務や会議,休憩といった室の使われ方に応 じた異なる雰囲気の空間を計画できる。また、局所的な 光の反射によって空間にメリハリをつけた設計も行われ る。以上のような設計の際に、空間の見え方や印象を予 測するには、反射指向特性を考慮したシミュレーション が有効である。

さらに別の例として、外装材の艶出しコーティングや 太陽光パネルの反射防止コーティングは非鏡面反射の場 合があり、これらからの反射光によるグレアの検討にお いては、その反射指向特性を考慮する必要がある²⁾。例え ば、黒色の屋根材を選定したのにも関わらず、直射日光 の反射によるグレアが発生することがある。これは、屋 根材の反射指向特性を考慮した輝度シミュレーションに より事前に予測することで対処できる。ここで紹介した のは一部であり、様々な場面で反射指向特性を考慮した シミュレーションが有用となる。

そこで、本研究では反射指向特性を考慮した輝度シ ミュレーション手法を開発した。本報では既往の計算式 を示したうえで、光束伝達の比率を計算する際の再分割 手法と補正手法を新たに提案した。反射指向特性が異な る内表面で構成された模型空間を対象として、計算値と 測定値を比較することで、提案した手法により計算精度 が向上することを明らかにし、本計算手法により指向性 のある反射面の特徴を再現できることを確認した。さら に、実在する建物内空間を対象として輝度分布計算を行 い、現地で測定した輝度分布と比較することで、本計算 手法の実建物空間への適用性の検討を行った。

3. 反射指向特性を考慮した光束伝達法に基づ く計算手法

a) 拡散性の高い建材 b) 反射指向性のある建材 Fig. 2 反射指向特性の異なる建材の見え方の違い Differences in Surface Appearance due to Directional Reflection Properties

a) 入射角が小さい場合 b) 入射角が大きい場合 Fig. 3 同一建材での入射角による見え方の違い Differences in the Appearance of the Same Surface due to the Angle of Incidence

Fig. 4 再分割時のFJIK'の関係(1辺を2分割した例) Repartition Method

3.1 基本の計算式

反射指向特性を考慮できる光環境計算手法の構築に向けて,基本の計算式を整理する。間接光束を未知数とする松浦・上谷の光束伝達相互反射式^{3),4}に従い,式(1),(2)を用いる。ただし実際の計算では,立体角投射率を用いて,式(2)の三重面積分を各分割面要素の重心位置でのやりとりに置き換えて簡単化した式(3)を用いる。

$$\Phi_{rIK} = \Phi_{r1IK} + \sum_{J=1}^{N} F_{JIK} \Phi_{rJI} \tag{1}$$

$$F_{JIK} = \frac{1}{f_{JI}A_J} \int_{S_K} \int_{S_I} \int_{S_J} \frac{\rho(x', x; x, x'')}{\cos\theta_o(x, x'')} e_o(x', x)$$

$$\times \pi e_o(x, x^{"}) dS_{xt} dS_x dS_{x"}$$
(2)

$$F_{JIK} = \frac{\pi A_K f_{KI} \cdot \rho(x_J, x_I; x_I, x_K)}{A_I \cos\theta_o(x_I, x_K)}$$
(3)

- F_{JIK}:分割面SJを発散して分割面SIに直接入射する光 束のうちSIで反射してSKに直接入射する光束 の比率 [-]
- f₁₁:立体角投射率 [-]

$$A_I, A_I, A_K$$
: 分割面 S_J, S_I, S_K の面積 [m²]

- θ_o(x,x"): xに立てた法線とx, x"を結ぶ線のなす角 [rad]
- *e*_o(*x*',*x*): *x*'より*x*への固有照度係数 [1/m²]
- x_I, x_I, x_K : 分割面 S_J, S_I, S_K の重心の

3次元位置ベクトル [m]

式(1)の連立方程式の解は反復解法であるガウス・ザイ デル法により求める。式(1)の第P次の近似解を $\Phi_{rlk}^{(P)}$ とす ると,相対残差 ϵ を収束判定条件に用い,式(4)を満たすま で反復計算を行う。本研究では $\epsilon = 10^{-3}$ とした。

$$\frac{\left|\Phi_{rIK}^{(P)} - \Phi_{rIK}^{(P-1)}\right|}{\Phi_{rIK}^{(P)}} \leq \varepsilon \tag{4}$$

分割面*S*_{*I*}で反射して分割面*S*_{*K*}に入射する平均間接輝度 *L*_{*r*|*K*} [cd/m²]は式(5)より算出する。

$$L_{rIK} = \frac{1}{\pi f_{IK} A_I} \Phi_{rIK} \tag{5}$$

分割面SKの照度EK [lx]は式(6)~(8)より算出する。

$$E_K = E_{dK} + E_{rK} \tag{6}$$

$$E_{dK} = \begin{cases} \sum_{I=1}^{N} \frac{\pi f_{KI} I_{dIK}}{A_I \cos \theta_o(x_I, x_K)} & (\text{A} \text{ ± } \mathbb{R}) \\ \sum_{I=1}^{N} \pi f_{KI} L_{dIK} & (\text{ tx 散 ± } \mathbb{R}) \end{cases}$$
(7)

$$E_{rK} = \frac{1}{A_K} \sum_{I=1}^{N} \Phi_{rIK}$$
(8)

$$E_{dK} : 分割面S_K の直接照度 [lx]
$$E_{rK} : 分割面S_K の間接照度 [lx]$$$$

3.2 立体角投射率 filo 補正

立体角投射率fult, 錐面積分の法則⁵⁰を用いて, 代表点 xuからみた分割面Suの立体角投射率から算出する。その後, 村上ら⁶⁰の手法に倣って,式(9)に示すように, 面積比によ る重みづけを行ったうえで総和則が成り立つよう補正を する。

$$f_{IJ}' = \frac{A_J}{A_I + A_J} (f_{IJ} + f_{JI}) / \sum_{J=1}^{N} \frac{A_J}{A_I + A_J} (f_{IJ} + f_{JI}) \quad (9)$$

$$f_{IJ}' : 補正後の立体角投射率 [-]$$

3.3 再分割によるFJIKの高精度化

指向性のある反射面を解く場合については、特に隅部 などにおいて分割面同士の距離が近くなることで F_{JIK} の 計算誤差が大きくなる。対策として、全ての分割面をよ り小さくすることが考えられるが、分割面要素数が多く なり、3面間の関係を解くには計算負荷が飛躍的に増加す ることが懸念される。そこで、 F_{JIK} を算出する際に、隅部 においてのみ分割面を再分割する工夫を行った。再分割 の際には、再分割後の面の形状にばらつきが出ないよう にした。式(10)のように、再分割後の各分割面の代表点に 対して光束が到達する比率を求め総和をとることで、分 割前よりも精度よく F_{JIK} が算出できるようにした(Fig. 4)。 式(10)は3.2節で述べた立体角投射率を用いて式(11)のよ うに書き換えられる。なお、立体角投射率 $f_{I'I'}$ は錐面積 分法⁵を用いて算出する。

$$F'_{JIK} = \frac{1}{f_{IJ}A_I} \sum_{x'_J} \sum_{x'_I} \sum_{x'_K} \frac{\pi \rho(x'_J, x'_I; x'_I, x'_K)}{\cos \theta_0(x'_I, x'_K)} e_o(x'_J, x'_I)$$

 $\times e_o(x'_I, x'_K) A'_J A'_I A'_K \quad (10)$

$$F'_{JIK} = \frac{1}{f_{IJ}A_I} \sum_{x'_J} \sum_{x'_I} \sum_{x'_K} \frac{\pi \rho(x'_J, x'_I; x'_I, x'_K)}{\cos \theta_0(x'_I, x'_K)} f_{I'J'} f_{K'I'} A'_K (11)$$

 F'_{IIK} : 再分割して算出した F_{IIK} [-] x'_{J}, x'_{I}, x'_{K} : 再分割後の分割面 S_{J}', S_{I}', S_{K}' の重心 A'_{J}, A'_{I}, A'_{K} : 再分割後の分割面 S_{J}', S_{I}', S_{K}' の面積 [m²] $f_{I'I'}: x'_{I}$ からみた分割面 S_{J}' の立体角投射率 [-]

3.4 *F_JIK*の補正

完全拡散面での反射特性関数 $\rho(x_J, x_I; x_I, x_K)$ は式(12) で表される。式(12)と式(3)により,再分割前の完全拡散 面同士での F_{IIK} ($F_{IIK u}$ と称する)は式(13)となる。

$$\rho_{-u}(x_{I}, x_{I}; x_{I}, x_{K}) = \cos\theta_{0}(x_{I}, x_{K})/\pi$$
(12)

 $F_{JIK_{u}} = f_{KI} A_{K} / A_{I}$ (13) $\rho_{u}(x_{J}, x_{I}; x_{I}, x_{K}) : 完全拡散面での反射特性関数
<math display="block">\rho(x_{J}, x_{I}; x_{I}, x_{K}) [1/sr]$

F_{JIK_u}: 再分割前の完全拡散面同士でのF_{JIK} [-]

前節のように再分割を行い, F_{JIK} を算出しなおす過程 において, 3.2節で補正した立体角投射率 f_{IJ} の総和則が崩 れ, $\sum_{J=1}^{N} \sum_{I=1}^{N} F_{JIK_u} = 1$ (K固定, $S_J \geq S_I$ が同一面に属する ときは0)を満たさなくなる問題が生じる。そこで,総和 則を満足するよう F_{JIK} の補正を行う。再分割後の完全拡 散面同士での F_{JIK} (F'_{JIK_u} と称する)は式(14)で表される ため,補正係数c [-]を式(15)より算出し,式(16)のように F_{IIK} の補正を行う。

$$F'_{JIK_u} = \frac{1}{f_{IJ}A_I} \sum_{x'_I} \sum_{x'_I} \sum_{x'_K} f_{I'J'} f_{K'I'} A'_K$$
(14)

$$c = F_{JIK_u} / F'_{JIK_u} \tag{15}$$

 $F'_{JIK} = cF'_{JIK}$ (16) $F'_{JIK_{u}}$:完全拡散面同士において再分割して算出され た $F_{JIK_{u}}$ [-] F''_{JIK} :補正後の F'_{JIK} [-]

反射指向特性を考慮した計算手法の検証⁷⁾

3.3節で示した光束伝達の比率FJIK算出の際の再分割手法と3.4節で示したFJIKの補正手法による計算精度を検証するため、模型実験を行い、再現計算結果と比較した。

4.1 模型実験

4.1.1 模型概要 実験模型の形状をFig. 5に示す。 内寸はD60×W60×H30 cmとし, 窓を模した長方形の開 口(W50×H15cm)を側面にひとつ設けた。図中A, B, Cの 位置には輝度測定のために開け閉め可能な40φの穴を設 け、それぞれの視点位置において輝度測定するときのみ 開けられるようにした(視点位置Aで測定する際には視 点位置B, Cの穴は塞ぐ)。模型外部は厚さ5mmの黒色つ や消しアクリル板により構成し、模型内部は拡散性の高 い白(Model 1)と艶のある白(Model 2), 艶のある黒(Mod el 3)の3種類の内装用シートを貼り、比較した。それぞれ の素材の反射特性関数pを決定づけるパラメータ8)につ いては市販計測器で測定可能な分光拡散反射率から簡易 推 定⁸⁾した(Table 1)。Fig. 6に入射光の入射角45°に対す る反射特性関数ρの計測値と数式モデル⁸⁾で近似した曲 線を示す。

4.1.2 光源 光源は,点光源を模した場合と拡散光 源を模した場合との2パターンとした。

点光源として配光角度21°のLEDスポットライトを用 いた。Fig. 7にスポットライト、模型、および計測機器の 配置を示す。スポットライトの床面からの高さは15cmと し、開口から入射した。視点A, Bの高さは11cmとした (Fig. 5)。実験は暗室内で行った。

拡散光源の実験では、機器類をFig. 8のように配置した。模型の開口部を拡散光源の面光源と見なせるように するため、蛍光灯に拡散パネルを取り付けた発光天井下 において、模型の開口が発光天井の方向を向くように模 型を垂直に立てて設置し、さらに光源の拡散性を高める

Shape and Dimensions of the Scaled Physica

Table 1 模型内表面の反射指向特性値

Directional Reflection Characteristics inside the Models

	屈折率 n [-]	係数 K [-]	傾斜角の 標準偏差 <i>of</i> [rad]	層内 反射率 <i>R</i> _D [-]
Model 1 (拡散 白)	1.54	0.877	0.155	0.864
Model 2 (艶あり 白)	1.54	4.805	0.076	0.846
Model 3 (艶あり 黒)	1.54	4.535	0.085	0.044

ために、開口部には乳白パネルを設置した。

それぞれの光源の輝度については4.2.2項において後述 する。

4.1.3 測定装置 Model 1~3それぞれについて,点 光源下および拡散光源下において,輝度分布と照度分布 の測定を行った。

輝度分布の測定には輝度分布画像が測定可能な2次元 色彩輝度計を用いた。点光源下では、Fig. 7に示す視点位 置A, Bにおいて, 拡散光源下では, Fig. 8に示す視点位 置A, Cにおいて, それぞれ測定した。

照度の測定においては,照度計はFig. 9のように,床 面と壁面に10cm間隔でそれぞれ5点ずつ配置した。

4.2 光束伝達法を用いた再現計算

反射指向特性を数式モデルで近似した式を反射特性 の入力条件として,光束伝達法を用いて反射指向性を考 慮した光環境再現計算を行う。

4.2.1 計算モデル 実験に用いた模型の内寸と同じ 形状のモデルを作成し, Fig. 10 に示すように全部で 1152 個の面に分割した。分割面要素を三角形としたのは, 今 後,様々な形状に対応できるようにするためである。黄 色で示す箇所が拡散光源の位置,赤色で示す箇所がス ポットライトの位置である。

反射指向特性の入力条件は,Table1に示した値を使用 した。点光源に対する計算では,開口部では全ての光が 通り抜けるため反射率を0とした。拡散光源に対する計算 では,開口部の乳白パネルは,拡散反射率14.7%の均等 拡散面とした。

4.2.2 計算式 3章で示した計算手法を用いた。第1 回反射光束Φ_{r1IK}は,点光源については式(17)より,拡散 光源については一様な発光面であると仮定して式(18)よ り算出する。

$$\Phi_{r1IK} = \sum_{I=1}^{N} \frac{F_{JIK} \pi f_{IJ} A_I I_{dJI}}{A_J \cos \theta_o(x_J, x_I)}$$
(17)

 I_{dJI} : 光源面 S_J から分割面 S_I への直接光度 [cd] $\Phi_{r1IK} = \sum_{J=1}^{N} F_{JIK} \pi f_{IJ} A_I L_{dJI}$ (18)

L_{dJI}: 光源面S_Jから分割面S_Iへの直接輝度 [cd/m²] 点光源の直接光度I_{dJI}は,使用したスポットライトの メーカーから入手できる配光データの値を用いた。拡散 光源の直接輝度L_{dJI}は,Fig. 8の視点Cにおいて測定した 輝度分布から,開口部の輝度を開口部全面で平均して算 出した。算出した輝度L_{dJI}は711cd/m²だった。

3.3節に示した再分割を行う条件については、分割面S_J とS_Iの距離もしくはS_IとS_Kの距離が分割面の短辺の長さ の5倍以下にある3分割面同士とし、再分割前後のF_{JIK}の 差が10⁻²以下となるまで分割を繰り返し、分割は最大で 一辺あたり4分割(16要素に分割)までとした。再分割を 細かくするほど精度は良くなるが、計算時間が長くなる。 上記の条件は、様々な条件で比較した結果、計算時間と

Fig. 8 拡散光源下での配置(断面図) Arrangement of the Diffuse Light Source

Fig. 10 計算モデルの分割面要素 Split Elements of Computerized Model

Display Method of Luminance Distribution

精度とのバランスが良かった条件である。

4.3 輝度分布の測定結果と計算結果の比較

4.3.1 輝度分布の表示 計算結果を可視化するため 任意の視条件(視点位置,注視方向,視野)に対する模 型箱内壁面の輝度分布を算出する。Fig. 11のように,各 分割面要素の代表点(今回は重心位置)から視点位置方 向への平均間接輝度Lrikを式(5)より算出し表示した。今 回の視点位置(例えば,Fig. 11中の視点A)では直接光源 が視界に入っていないが,直接光源を見る場合(例えば, Fig. 11中の視点C)には,光源からの直接輝度Latkも合算 する。光束計算は分割面内の代表点(重心)について行っ た。結果は線形補間による2次元カラーコンターで表示し た。Fig. 12に視点A,Bからの模型内部の透視図と,輝度 分布の測定および計算範囲を示す。

4.3.2 FJIKの再分割および補正による計算精度の比較

3.3節, 3.4節で提案した*FJIK*の再分割および*FJIK*の補正 の効果をみるため, Fig. 13~15にModel 2 (艶あり 白) で の視点Aからの壁面の測定輝度分布,計算輝度分布を示 す。図中, Maxは最大値, Minは最小値, Aveは平均値, oは標準偏差, Cは「(最大値—最小値)/平均値」によっ て算出した輝度対比を表す。Fig. 14, 15中, ドットで示 しているのは計算点である。

Fig. 14 a), Fig. 15 a)に示すFJIKの再分割と補正を行わ なかった計算輝度分布では, 隅部に高輝度となる斑点状 の分布が現れ,計算精度が良くない。隅部は分割面同士 の距離が近くなるため, FJIKの誤差が大きくなりやすい ためである。提案したFJIKの再分割手法と補正手法によ り(Fig. 14 b), Fig. 15 b)),距離の近い面同士での光束の やり取りについての計算精度が向上し, 隅部での計算結 果が改善され,実測値の分布に近づく傾向となった。一 部, 隅部に高輝度部分が残る点については,今後の課題 である。

4.3.3 反射特性別の比較 Fig. 16~18に示すのは, 反射特性の異なる内表面を持つModel 1~3の点光源下 での輝度分布の測定結果と計算結果である。拡散性が高 い白色の内表面を持つModel 1の測定輝度分布(Fig. 16 a), b))では, 視点AとBで見る方向を変えても最大輝度は それほど変わらないが、指向性のある反射特性を持つ白 色のModel 2(Fig. 17 a), b))および黒色のModel 3 (Fig. 18 a), b))では, 正反射方向に近い位置になる視点Bの方 が,視点Aよりも最大輝度がかなり高くなった。この傾向 はFig. 17 c), d), Fig. 18 c), d)に示す計算結果において 再現できた。また, Fig. 17 a), Fig. 18 a)に示すModel 2 および3の視点Aでの測定輝度分布では、開口部側に近い 左端に輝度が高い箇所が現れた。輝度計の測定位置がス ポットライトの正反射に近い角度条件となる壁面の左端 の位置では、指向性のある反射面では反射強度が大きく なるためである。Fig. 17 c), Fig. 18 c)の再現計算にお いて, 左端が明るくなる測定輝度分布の特徴を再現でき た。

Fig. 12 視点位置ごとの模型内透視図と輝度分布範囲 Perspective View inside of the Model at Each Viewpoint Position and Calculation Area of Luminance Distribution

Max: 419, Min: 213, Ave: 266, σ: 31.98, C: 0.77 Max: 333, Min: 211, Ave: 265, σ: 27.86, C: 0.46 b) F_{JIK}再分割,補正あり

a) *F*_{JIK}再分割,補正なし b) *F*_{JIK}再分割,補正あ Fig. 15 拡散光源下でのModel 2の計算輝度分布 Reproduced Calculated Luminance Distributions of Model 2 under the Diffuse Light

Max: 2540, Min: 494 Ave: 893, σ: 377, C: 2.29 a) 視点A 測定結果

Max: 2818, Min: 381 Ave: 816, o: 383, C: 2.99 b) 視点B 測定結果

Ave: 906, σ: 367, C: 2.37 c) 視点A 計算結果 Fig. 16 Model 1 (拡散 白) での輝度分布

Max: 2625, Min: 502, Ave: 917, o: 389, C: 2.32 a) 視点A 測定結果

Max: 4342, Min: 409 Ave: 855, o: 476, C: 4.60 b) 視点B 測定結果

Ave: 1036, σ: 351, C: 1.94 c) 視点A 計算結果 Fig. 17 Model 2 (艶あり 白) での輝度分布

Measured and Calculated Luminance Distributions of Model 2

Ave: 52, o: 195, C: 34.64 d) 視点B 計算結果

Max: 538, Min: 1, Ave: 24, σ: 53, C: 22.20 視点A 測定結果 a)

Max: 1949, Min: 1 Ave: 46, σ: 165, C: 42.37 b) 視点B 測定結果

Ave: 30, σ: 57 ,C: 14.78 c) 視点A 計算結果 Fig. 18 Model 3 (艶あり 黒) での輝度分布

Measured and Calculated Luminance Distributions of Model 3

5. 実建物での検証

実建物において輝度分布の予測計算を行う際には,凹凸 のある建物形状や室内にある什器等を考慮する必要があ る。そこで、見えがかりを考慮した立体角投射率の算出 方法を提案したうえで,実建物において反射指向特性を 考慮した輝度シミュレーションを行い、実測値と比較検 証する。

5.1 見えがかりを考慮した立体角投射率の算出手法

2面間での相互の光束伝達が他の面によって遮られる 割合によって、立体角投射率の重み付けを行うことで見 えがかりを考慮する。Fig. 19に示すように、立体角投射 率を算出する2面間で光線を飛ばし,その光線が他の面に

見えがかりの係数=遮られなかった光線/全光線 (本図では2/3)

Fig. 20 実建物モデルの形状と分割要素(単位:mm) Elements of Computerized Building Model

よって遮られるかどうかの判定を行い,全光線本数に対 する他の面に遮られなかった光線本数によって見えがか りの係数を決定した。

Table 2 実建物モデルの内装材の反射指向特性値 Directional Reflection Characteristics

inside the Real Building Model

5.2 建物概要

実建物は、幅が3.4mで長さが57.3mの長い廊下空間を 対象とした。天井高さは2.8mで天井中央には蛍光灯が配 置されている。建物形状を示す図については5.3.1項の計 算モデルにおいて後述する。床や扉には艶があり、指向 性のある建材が用いられている。内装材の反射指向特性 の詳細については5.3.2項において後述する。

5.3 計算条件

5.3.1 計算モデル Fig. 20に示す実建物と同一形状 の数値計算用のモデルを作成し,不均一な1704の三角形 形状に分割した。計算負荷を削減するため,視点位置(Fig. 20中,黒色で図示)から遠い面では粗い分割とした。ま た,Fig. 20において各面は反射特性が同一な面ごとに同 色で塗分けているが,この色自体は実際の面の色とは無 関係である。

5.3.2 反射面の反射指向特性 各面の反射指向特性 値については、現地測定により推定⁹⁰した値を入力値と した(Table 2)。また、比較のため、全ての面が均等拡散面 であると仮定した場合についても計算を行った。その際 の各面の反射率は、層内反射成分をTable 2と同一とし、 表皮反射成分を0とした。

5.3.3 光源の入力条件 天井の蛍光灯の直接光度に ついては、実際に使用されている蛍光灯が古く、同一製 品の配光データが入手できなかったため、類似製品の配 光データを用い、照明の保守率は0.69とした¹⁰。

5.3.4 見えがかりを考慮した立体角投射率算出の条件

5.1節に示した立体角投射率算出の見えがかりの係数 を算出するための,分割面2面間で飛ばす光線本数は81本 とした。

5.3.5 **再分割の条件** 3.3節に示した*F*_{JIK}の再分割を 行う条件については、分割面*S*_Jと*S*_Iの距離もしくは*S*_Iと*S*_K の距離が分割面の最長の辺の長さ7710mmの5倍以下に ある3分割面同士とし、再分割の限度は第3章と同条件と

部位	屈折率 n [-]	係数 K [-]	傾斜角の 標準偏差 <i>o_f</i> [rad]	層内 反射率 <i>R</i> _D [-]
天井	1.05	6.90	0.162	0.873
壁	1.06	28.51	0.213	0.490
床	1.52	19.93	0.0307	0.214
屝	1.23	9.75	0.0468	0.232
配電盤	1.46	4.69	0.0368	0.768
シャッ ター	1.03	78.24	0.185	0.424

した。比較のため、再分割をしない場合についても計算 を行った。

5.4 測定概要

輝度分布の測定では、一眼レフカメラを用いて露光状 態を変えた写真を複数枚撮影し、輝度変換ツールを用い て合成および輝度分布画像へ変換した。測定位置は、Fig. 20で示した視点位置において高さ150cmの位置とし、廊 下に沿って対面の壁を正対してみる視線方向(Fig. 20中, 矢印の方向)で測定した。

5.5 測定輝度分布と計算輝度分布の比較

視点位置からの撮影写真をPhoto1に,測定した輝度分 布をFig.21に,計算した輝度分布をFig.22,23に示す。計 算値は,各分割面内部を一様の輝度で塗りつぶして表示 している。

Fig. 21に示す測定輝度分布では、天井の蛍光灯や輝度 の高い壁面、ドア面が床に映り込む様子が確認された。 また、右側の扉の左上部において局所的に輝度が高くな る様子が確認された。Fig. 23に示す全ての面を均等拡散 面と仮定した一般的な計算結果では、その傾向が再現で きなかった。一方で、Fig. 22 に示す反射指向特性を考慮 した本研究の計算手法では、床面の中心に帯状に蛍光灯 が映り込み,局所的に輝度が高くなる分布や,床面に輝 度の高い壁や扉が反射して,輝度が高くなる分布の傾向 が再現できた。また,右側の扉の左上部において局所的 に輝度が高くなる状況も再現できた。

測定画像と比較して分布に滲みが生じているのは,分 割面サイズによるものである。また,Fig. 23の均等拡散 面と仮定した場合の方が,Fig. 22の反射指向特性を考慮 した場合よりも全体的に輝度が低くなっているのは,均 等拡散面の仮定の際に,層内反射成分の条件は同じとし て表皮反射成分のみを0としたためである。

以上より、本研究の手法と一般的な手法(Fig.22,23)で は輝度分布の計算結果が異なり、本研究では実際に近い 輝度分布の予測結果を顧客に提示できるといえる。局所 的な光の反射によって空間にメリハリをつけたり、高級 感や特別感を狙った設計を行う際の予測に有効である。

6. まとめ

反射指向特性を考慮した光束伝達相互反射式を用い て,輝度分布計算手法を構築した。基本の計算式を示し たうえで,以下の提案を行った。

- 隅部等の距離が近くなる分割面間での光束伝達の 比率を計算する際の分割面の再分割手法
- 百分割手法により算出した光束伝達の比率の補正
 手法

反射指向特性の異なる3種類の模型(拡散性の高い白 色,艶のある白色,艶のある黒色)を用いて,点光源と 拡散光源を用いた測定を行い,上記計算手法による計算 結果と比較した。その結果,以下の知見を得た。

- 3) 拡散反射率がほぼ同等であっても、拡散性の高い 反射面と指向性のある反射面とでは輝度分布の形 状が異なることを確認した。
- 指向性のある反射面では見る角度によって最大輝 度が大きく変化することを確認した。
- 5) 反射指向特性を考慮した光束伝達相互反射式を用いて、指向性のある反射面の輝度分布を再現できることを示した。
- 6) 提案した再分割手法および補正手法により、分割 面同士の距離が近くなる隅部の計算精度が改善さ れることを明らかにした。

実建物空間を対象とした輝度分布の予測計算を行う上 で必要となる、凹凸や障害物がある場合の見えがかりを 考慮した立体角投射率の算出方法を提案した。本手法を 用いて、実建物空間おいて反射指向特性を考慮した輝度 分布の計算を行った。本結果を、全ての面を均等拡散面 と仮定して計算した輝度分布および現地で測定した輝度 分布と比較し、以下を示した。

7) 測定輝度分布では艶のある扉や床面において局所 的に輝度が高くなる様子が確認された。均等拡散 面として仮定した一般的な計算手法では、その傾

Photo 1 内観写真 Inside of the Building

Fig. 21 測定輝度分布 Measured Luminance Distribution (LD)

Fig. 22 本報の計算輝度分布 LD Calculated by the New Method

Fig. 23 本報の計算輝度分布 LD Calculated by the New Method

向を再現できなかったが、開発した計算手法にお いては再現できた。

本報による反射指向特性を考慮した輝度シミュレー ション技術は、空間の明るさや視覚的な快適性,照明器 具の配置や採光による建材の見え方,艶のある建材から の反射光の眩しさの検討など多岐にわたり,詳細な光環 境の予測を行ううえで有益であり,顧客の要望に沿った 空間をエビデンスに基づいた計画により実現できる。

なお,指向性の非常に強い反射面での局所的な輝度変 化を表現するには,計算精度や解析時間に課題が残る。 今後も継続的に計算の効率化と精度向上に取り組みたい。

謝辞

本研究は京都大学および関西大学との共同研究「輝度 シミュレーションの精度向上に関する研究」において実施したものである。多大なる助言をいただきました京都 大学原田和典教授および関西大学原直也教授に深謝致し ます。

参考文献

- 日本建築学会:日本建築学会環境規準AIJES-L0002-2016照明環境規準・同解説,丸善出版, p. 1, 2016.6
- Brotas, L., Wienold, J.: Solar reflected glare affecting visual performance, Proceedings of 8th Windsor Conference, Counting the Cost of Comfort in a Changing World, Cumberland Lodge, Windsor, UK, pp. 688-693,

2014

- 3) 松浦邦男,上谷芳昭:照明計算のための反射指向特 性の数式モデル化,日本建築学会近畿支部研究報告 集,pp.33-36,1990
- Uetani, Y., Matsuura, K.: A Method of Luminance Calculation in an Anisotropic Diffuse Reflecting Interior, Journal of the Illuminating Engineering Society, 22 pp. 166-175, 1993
- 5) 照明学会:新編照明専門講座テキスト 第33期, 第4 版, p. 11-3, 2017.8
- 6) 村上周三,加藤信介,大森敏明,崔棟皓,小林光:複 雑形状室内空間における熱環境場の対流,放射連成 シミュレーション,生産研究,第44巻,第2号,pp.56-63,1992.2
- Yabe, C., Harada, K., Hara, N.: Verification of the Accuracy of the Calculated Luminance Distributions of Scaled Physical Models with Directional Reflective Surfaces, Building and Environment, Vol. 209, 108670, 2022. 2
- 矢部周子,原直也,原田和典:容易に測定可能な物 性値を用いた建材の反射指向特性の簡易推定,日本 建築学会環境系論文集,第84巻,第758号,pp.377-384,2019.4
- 9)藤田翔, 矢部周子, 原田和典, 仁井大策: 建築材料の 表面特性を用いた反射特性値の推定, 日本建築学会 大会学術講演梗概集, 環境工学I, pp. 469-470, 2020.
 9
- 10) 照明学会:技術指針JIEG-001 照明設計の保守率と 保守計画 第3版, 2005