◇技術紹介 Technical Report・

建物地震被災度即時推定システムの開発

Immediate Evaluation System for Seismic Damage Level of Buildings

諏訪 仁 三浦 耕太 江村 勝 ^(設計本部)	Hitoshi Suwa Kota Miura Masaru Emura
中塚 光一	Koichi Nakatsuka
(設計本部)三好 夏恵(設計本部)	Natsue Miyoshi

1. はじめに

2011 年の東北地方太平洋沖地震において首都圏で発 生した帰宅困難者を踏まえ、地震後に企業等が施設に留 まれるかの判断を迅速に行うことが求められている。地 震後においては、建物の応急危険度判定が余震等による 建物倒壊に伴う二次的災害の防止を目的に実施される。 これまでの応急危険度判定は判定士による建物の目視調 査で実施されており、判定結果を得るまでに1週間程度 かかっていた。このため、日本建築防災協会は応急危険 度判定の迅速化を目的に,応急危険度判定基準に基づく 構造モニタリングシステムの技術評価を 2021 年に開始 した。

大林組は建物地震被災度即時推定システムを開発し, 2022年3月に構造モニタリングシステムの技術評価(建 防災発第30176号)を取得した。本システムを用いるこ とにより,構造躯体の被災程度を地震後に数分程度で判 定可能となり、これまでの判定士による目視調査と比較 して判定結果を得るまでの時間を大幅に短縮できる。

2. 建物地震被災度即時推定システム

2.1 システムの概要

建物地震被災度即時推定システムでは,建物基部(1階) に1台と建物最上部(最上階または最上階より1階下) などに1台以上の計2台以上のセンサを設置する。地震 発生時、建物基部で観測した加速度記録を設計モデルに 入力して地震応答解析を行い、設計モデルと実建物の違 いを考慮して層間変形角を推測する。地震後に数分程度 で,被災建築物応急危険度判定マニュアル いにおける「構 造躯体の被災程度は小さいと考えられ使用可能」(以下, A ランクと呼ぶ)か否かを示す。

2.2 システムの特長

センサが設置されていない部分の層間変形角は,3.2節 に示す求め方で推測される。このため、センサの設置数 の低減が可能になり、システムの設置費用ならびに維持 管理費用を安価にできる。また、設計モデルを用いた弾 塑性地震応答解析を行うため、層間変形角の推定におい て弾性時のみならず建物の塑性化による影響も考慮でき る。

2.3 システムの適用範囲

対象は、1981年6月以降の新耐震基準において、ルー ト3(建築基準法施行令第82条保有水平耐力計算)で 設計された高さ 60m 以下の耐震構造の建物とする。ここ で、対象建物を Table 1 に示す。耐震構造以外の免震構造 や制振構造などの建物は対象外となる。

構造躯体の被災程度が A ランクでなかった場合, なら びに構造躯体以外(隣接建築物、周辺地盤、落下ならび に転倒危険物など)の被災程度は対象外となり、建物の 応急危険度を判定するには別途調査が必要となる。

2.4 センサ及び収録装置

建物地震被災度即時推定システムで使用するセンサ及 び収録装置の必要性能は、Table 2 となる。

構造躯体の被災程度の判定方法 3.

構造躯体のAランク判定に用いる指標値は層間変形角 とし、閾値は3.1節により設定する。つぎに、3.2節によ り層間変形角を求め、各方向の全ての層における層間変 形角が閾値以下であることを確認することで建物全体を

Table 1 対象建物 Target Building

構造種別	構造形式
PC法	ラーメン構造
KC追 SPC ^注	耐震壁付きラーメン構造
SKC坦	壁式構造
	ラーメン構造
S造	ブレース付きラーメン構造
	ブレース構造

Table 2 センサ及び収録装置の必要性能 Required Performance of Sensor and Recording Device

項目	必要性能	
サンプリング 周波数	100Hz~200Hzの範囲で設定	
分解能	0.01gal	
測定範囲	±2000gal~±3000galの範囲で設定	
周波数特性	DC~(50Hz~100Hz)の範囲で設定	
センサ間の 時刻同期精度	0.001sec以内	

Aランクと判定する。判定は、地上部分を対象とする。

A ランクの評価フローを, Fig. 1 に示す。A ランクの判 定は建物内 PC で演算し, センサと建物内 PC 間の通信 は有線 LAN, 判定結果の建物内 PC から建物外部への発 信は LTE 通信とする。

3.1 A ランクの指標と閾値の設定方法

立体解析モデルを対象に非線形荷重増分解析を行い,

- ・各層の層間変形角と層せん断力の関係
- ・構造特性係数 Ds を計算するときの部材群としての 種別

などに基づいて, A ランク閾値となる層間変形角を設定 する。A ランク閾値は,非線形荷重増分解析を行った正 方向と負方向それぞれ算出し,両方向のうち小さい方を 建物地震被災度即時推定システムの閾値として用いる。

3.1.1 RC 造と SRC 造の A ランク閾値 部材(柱,梁 および耐震壁)種別が A~C においてせん断余裕度 m(曲 げ終局強度時せん断力に対するせん断終局強度の比率) が小さい場合,実建物の部材耐力が設計モデルから変動 すると,破壊モードが曲げ破壊からせん断破壊に移行す る可能性がある。このため,A ランク閾値となる k 層の 層間変形角 δ_{ck} は,部材のせん断余裕度 m により Table 3 で区分した後に,Table 1 の構造形式ごとにA ランク閾値 を設定する。一例として,せん断余裕度Iのとき,耐震壁 付きラーメン構造のA ランク閾値は Table 4 となり,閾 値 1 は Table 5 で設定する²⁾。ここで,Table 4 の β u は耐 震壁の水平耐力の和を保有水平耐力の数値で除した数値 を示す。

3.1.2 S造のAランク閾値 S造のAランク閾値と なる k層の層間変形角 δ_{ck} は, Table 1の構造形式ごとに 設定する。ラーメン構造とブレース付きラーメン構造の A ランク閾値はそれぞれ Table 6 と Table 7 となり, 一例 として閾値 1 は Table 8 で設定する²⁾。

3.2 **層間変形角の求め方**

3.2.1 センサ変位の求め方 センサで観測した加速

度波形をフーリエ変換して, 複素フーリエ係数を計算す る。加速度波形の長周期成分を除去するためハイパス フィルタを適用した後の複素フーリエ係数を計算し, フーリエ逆変換してフィルタ処理後の加速度波形を求め る。加速度波形を時間積分して速度波形を計算し, 基線 補正の後に速度波形を時間積分して変位波形を求める。

3.2.2 各層の層間変形角の求め方 各層の層間変形 角と層せん断力の関係は、立体解析モデルを対象とした 非線形荷重増分解析により求める。質点系の設計モデル は、層間変形角と層せん断力の関係をトリリニア型に置 換して作成する。応答値の求め方を、Fig.2 に示す。建物

 Table 3
 せん断余裕度による区分(RC造, SRC造)

 Classification by Shear Margin

	梁、柱、耐震壁のせん断余裕度m
- 井/ 辉合松 庄 I	梁のm≧1.1かつ柱のm≧1.2かつ耐震
セん桝余俗度Ⅰ	壁のm≧1.25のとき
- 井/ 斯会讼 座 Π	梁のm<1.1または柱のm<1.2または
ビル阿赤桁皮 II	耐震壁のm<1.25のとき

 Table 4
 耐震壁付きラーメン構造のA
 ランク閾値 (RC 造, SRC 造)

Damage Level "rank-A" for the Moment Resisting Frame with Earthquake Resisting Wall

		柱および梁の部材群としての種別				
		А	В	С	D	
工産成の		А				
前長生の	B C		閾値1		閾値2	
前材群と						
[□] [□] [□] βu≦0.3		閾値2		閾値3		
נימ	$\beta u > 0.3$		閾値3			

Table 5 耐震壁付きラーメン構造の閾値の設定(RC 造, SRC 造)

Definition of the Threshold for the Moment Resisting Frame with Earthquake Resisting Wall

および耐震壁)に最初に曲げ降伏ヒンジが発生した時点における層間変形角

Fig.1 A ランクの評価フロー

Evaluation of Damage Level "rank-A"

階数が n で, センサ設置階が i 階と j 階 (ただし, i < j) とする。建物基部(1 階)のセンサで観測された加速度 波形を設計モデル(質点系モデル)に入力して地震応答 解析を行い,センサ間の最大相対変位(解析値) d_{aji} と k 層の最大層間変形角(解析値) δ_{ak} を計算する。 $1 \leq k \leq n$ として(n+1)階は R 階とする。

$$d_{aji} = max \left| P_j(t) - P_i(t) \right| \ (0 \le t \le T)$$

$$\tag{1}$$

$$\delta_{ak} = \frac{\max |P_{k+1}(t) - P_k(t)|}{h_k} \quad (0 \le t \le T)$$
(2)

ここに、P_j(t)、P_i(t):j 階、i 階の相対変位波形(解析値) P_{k+1}(t)、P_k(t):k+1 階、k 階の相対変位波形(解 析値)

h_k: k 層の階高

T:波形の継続時間

つぎに, i 階と j 階のセンサで観測された加速度波形を 時間積分して絶対変位波形を計算し, i 階と j 階のセンサ 間の最大相対変位(観測値) doji を計算する。

$$d_{0ji} = max |D_j(t) - D_i(t)| \ (0 \le t \le T)$$
(3)

ここに, D_j(t), D_i(t): j 階, i 階の絶対変位波形(観測値)

このとき,解析値と観測値の乖離を補正するため,セ ンサ間の最大相対変位(解析値) d_{aji} とセンサ間の最大相 対変位(観測値) d_{Oji} を用いて補正係数 α_{ji} を計算する。 $\alpha_{ji} = d_{Oji}/d_{aji}$ (4)

最大層間変形角(応答値)δ_kは,センサ(建物上部) の設置階jに応じた補正係数α_{ji}を最大層間変形角(解析 値)に乗じて評価する。

 1)建物上部のセンサ設置階jが(n+1)のとき

 $\delta_k = \alpha_{n+1,i} \times \delta_{ak}$ ($i \le k \le n$)

 2)建物上部のセンサ設置階jがj≦nのとき

Table 6 ラーメン構造の A ランク 閾値 (S 造) Damage Level "rank-A" for the Moment Resisting Frame

	Α	
柱および梁の部材群	В	閾値1
としての種別	С	
	D	閾値2

Table 7 ブレース付きラーメン構造の A ランク閾値 (S 造)

Damage Level "rank-A" for the Moment Resisting Frame with Brace

		柱および梁の部材群とし [、]		ての種別	
		Α	В	С	D
ブレースの	Α				
部材群とし	В		閾値3		閾値4
ての種別	С				

Table 8 閾値の設定(S造) Definition of the Threshold for Steel Frame

	非線形荷重増分解析において、層の部材(柱およ
閾値1	び梁)に最初に曲げ降伏ヒンジが発生した時点に
	おける層間変形角

$$\delta_k = \alpha_{ji} \times \delta_{ak} \quad (i \le k \le n) \tag{6}$$

建物地震被災度即時推定システムでは、最大層間変形 角(観測値)δ_{0k}と最大層間変形角(応答値)δ_kから求め られる応答誤差を考慮するため、最大層間変形角(応答 値)δ_kに安全率Sを乗じた最大層間変形角(上限応答値) δ_{5k}を用いる。

$$\delta_{Sk} = S \times \delta_k$$
(7)

→、、

→、

→、

→、

→、

→、

(1 匹) し

た

一

四

(1 匹) し

つ

(1 匹) し

つ

(1 匹) し

つ

(1 匹) し

(1

センサが建物基部(1階)と建物最上部(最上階より1 階下)に2台設置されたとき,(7)式の安全率Sは文献3) の検討結果に基づき1.5に設定する。

3.3 判定結果の示し方

判定結果の内容は建物内 PC に表示し,かつ,建物所 有者,建物管理者等へメールにより判定結果を報告する。 建物内 PC ならびにメールに表示されるA ランク判定は, Table 9 とする。

4. 建物地震被災度即時推定システムの設置例

4.1 システムの設置条件

対象は、都内に建つS造4階のブレース付きラーメン 構造の建物⁴⁾となる。被災度判定に用いるセンサは、1階 と4階の2箇所に設置する。3.2節の層間変形角の求め 方を検証するため、検証用センサを2階と3階の2箇所 に設置する。4階のセンサ配置図を、Fig.3に示す。

構造特性係数 Ds を決定するときの部材群としての種 別を用いて、3.1 節の手法に従い建物各層の A ランク閾 値を求めると Table 10 となる。ラーメン構造の閾値 1 は Table 8 となり、ブレース付きラーメン構造の閾値 3 は文 献 2)により設定する。ブレース付きラーメン構造の層間 変形角 δ_{ck} は、(1)柱および梁部材の曲げ降伏に基づく値 δ_{hk} と、(2)ブレースの降伏に基づく値 δ_{bk} の内で小さい方

Fig. 2 応答値の求め方 Evaluation of the Response Value

Table 9 A ランク判定の表示 Indication of Damage Level "rank-A"

Aランク判定 の場合	応急危険度判定基準に基づく構造モニタリ ングシステム技術評価を受けたKA判定結 果:『KA』
Aランク判定	応急危険度判定基準に基づく構造モニタリ
でなかった	ングシステム技術評価を受けたKA判定結
場合	果:『判断するには別途調査が必要』

の値として(8)式より求める。 $\delta_{ck} = \min \{ \delta_{hk}, \delta_{hk} \}$

(8)

4.2 観測値と上限応答値の比較

2018 年 11 月~2022 年 3 月に観測した合計 93 地震を 対象に,(7)式により安全率を考慮した最大層間変形角 (上限応答値)を計算する。最大層間変形角(観測値) と最大層間変形角(上限応答値)を比較すると,Fig.4 と なる。最大層間変形角(観測値)が大きくなるに従い, 最大層間変形角(上限応答値)は最大層間変形角(観測値) が約0.00015 以上の範囲では,最大層間変形角(観測値) が最大層間変形角(上限応答値)を超過する割合は0と なる。従って,最大層間変形角(上限応答値)を用いる ことにより,センサが設置されていない部分の最大層間 変形角は,構造躯体のA ランク判定が必要となる最大層 間変形角の範囲において安全側に評価できることが検証 された。

4.3 判定結果の表示例

2021 年 10 月 7 日に発生した千葉県北西部の地震(M5.9) を対象に, 建物内 PC に表示された判定結果を Fig. 5 に 示す。図中に赤枠で示すように, この地震における判定 結果は A ランク(応急危険度判定基準に基づく構造モニ タリングシステム技術評価を受けた KA 判定結果:『KA』) となった。

5. まとめ

大林組が開発した建物地震被災度即時推定システムを 対象に、構造躯体の被災程度がAランクの判定方法を紹 介した。本システムを設置した建物を日本建築防災協会 に登録することにより、Aランク判定が技術評価を受け た判定結果として地震直後に表示可能となり、建物内の 残留可否の判断などに活用できる。今後、システム設置 手順書を作成して建物登録を支援し、応急危険度判定の 迅速化を実現することにより顧客の BCP に貢献する所 存である。

参考文献

- 一般財団法人 日本建築防災協会,全国被災建築物応 急危険度判定協議会:被災建築物応急危険度判定マ ニュアル,1998.6
- 2) 諏訪仁,江村勝,中塚光一,三好夏恵,三浦耕太: 建物地震被災度即時推定システムの設置・判定・管 理指針,建築防災,通巻 535 号,2022.8
- 諏訪仁,三浦耕太,江村勝,三好夏恵:建物の地震 被災度判定における応答値の評価法,日本建築学会 大会学術講演梗概集,2022.7
- 4) 諏訪仁,三浦耕太,江村勝,三好夏恵:地震直後に

Fig. 3 4階のセンサ配置図 Placement of the Sensor at the 4th Floor

Table 10	建物各層のAランク閾値
Damage I	evel "rank-A" at Each Story

層	X方向	Y方向
4	閾値1	閾値1
3	閾値3	閾値3
2	閾値3	閾値3
1	閾値3	閾値3

Fig. 5 判定結果の例 Evaluation of the Seismic Damage Level for the Building

おける建物の被災度判定法-2021 年 2 月 13 日福島 県沖の地震への適用-,日本建築学会大会学術講演梗 概集, 2021.