減衰材を用いた遮音構造に関する基礎的検討

高橋克俊 渡辺充敏

池上雅之

Study on Sound Insulation Structure with a Damping Material

Katsutoshi Takahashi Mitsutoshi Watanabe

Masayuki Ikegami

Abstract

In general sound insulation walls, the desired sound insulation performance may not be obtained in the lowfrequency range even if the necessary performance is obtained in the middle-to high-frequency range. To solve this problem, studies aiming at efficiently improving the sound insulation performance in the low-frequency range were performed. We devised a sound insulation structure that reduces the displacement of the wall that vibrates significantly in the out-of-plane direction using damping materials. In this study, we measured the sound insulation performance of a panel incorporating a gel and its contribution to the improvement of performance in the low-frequency range. Based on the results, it was suggested that this sound insulation structure of actual size could be realized.

概 要

一般的な乾式遮音壁では、中~高音域で必要な遮音性能が得られても、低音域では必要十分な性能が得られ ない。近年、この課題を解決するために、効率的な低音域の遮音性能向上を目的とした研究が行われている。本 報では、低音域で壁の面外方向の変位が大きくなることに着目し、生じた変位を減衰材で吸収することにより、 遮音性能向上を図る遮音構造を考案した。今回の基礎的検討では、減衰材としてゲルを付加したパネルを対象に 遮音性能を測定することで、低周波数域での遮音性能の向上への寄与を確認した。さらに、ゲルの接触面積や厚 さを変化させた場合や、ゲルにあらかじめ圧縮変形を加えた場合についても、同様の測定を行い、それぞれの場 合のパネルの遮音性能を確認した。その結果、実物大の壁においても、ゲルあるいはその他の減衰材を用いた遮 音構造が実現できる可能性が示唆された。

1. はじめに

空調設備機器等の騒音は低周波数成分を多く含む。こ れらの機器を設置した設備機械室の周囲に居室がある場 合,その界壁の遮音仕様を検討するが,一般的に使われ る乾式遮音壁では,中~高音域で必要な遮音性能が得ら れても,低音域では必要十分な性能が得られない。Fig.1 に二重の乾式遮音壁の音響透過損失の模式図を示す。乾 式遮音壁を構成する面材の質量と内部の空気のバネの関 係によって,低周波数域(fr)で共鳴が生じ,投入した材料 の質量から期待される値より音響透過損失が小さくなる

(低域共鳴透過)。質量の大きな面材や下地の工夫によっ て低域共鳴透過の影響を抑えた製品もあるが、コストは 高くなる傾向にある。オフィスビルでは各基準階に設備 機械室が配置されるため、高層であるほど設備機械室周 囲の遮音壁のコストが建設費に与える影響は大きくなる。 以上のような背景から、近年では低周波数域の遮音性能 向上を目的とした研究が行われている。

例えば,遮音壁の曲げ剛性の向上が低周波数域での遮 音性能に有利であることから,西村¹)は,加圧された袋状 の薄膜を鋼製格子によって壁内に拘束し,剛性を高くす ることで,低周波数域で高い遮音性能が得られることを 示している。また,杉江等²は,二重壁の内部にレゾネー タを付加することで,低域共鳴透過周波数付近の挙動を 制御し,低周波数域での遮音性能の向上を図る方法につ いて検討を行っている。しかしながら,いずれも従来と

Fig. 1 二重の乾式遮音壁の音響透過損失の模式図 Sound Reduction Index of Multi-layer Wall

大きく異なる施工方法が必要となるため,遮音壁の形状 に制約が生じる等の実用化に向けた課題は大きいと見ら れる。

今回筆者らは、低周波数域において遮音壁の面外方向 の変位が大きくなることに着目し、生じた変位を減衰材 で吸収することにより、遮音性能の向上を図る方法につ いて検討した。一般に遮音壁では、室内の音圧の偏在の 影響を受けて振動性状が複雑になりやすい。今回は基礎 的検討のため、単純な一次元音場を想定できるダクト状 の模型を対象として実験を行った。検討に際しては、低 周波数域に固有振動数が現れるように調整した弾性支持 のパネルをダクト開口に設置し、これに減衰材としてゲ ルを組み込んだ際の遮音性能の変化を測定することで、 低周波数域での遮音性能の向上への寄与を確認した。ま た、さらに遮音性能を向上させるための試みとして、ゲ ルの接触面積や厚さを変化させた場合や、ゲルにあらか じめ圧縮変形を加えた場合についても、同様の測定を行 い、それぞれの場合のパネルの遮音性能を確認した。

以下に検討の概要と結果を示す。

2. 減衰材を用いた遮音構造の概要

Fig.2に減衰材を用いた遮音構造の模式図を示す。面材 (振動部材)に固定されたアングル,および躯体(剛性 部材)に固定されたアングルは,離間して対向するよう に配置されており,その両アングルに挟み込む形で減衰 材を設置する。音圧加振により面材が振動した際,面材 と躯体の間に生じた変位により減衰材がせん断変形し, 面材の運動エネルギーを熱に変換する。低周波数域ほど 振動の変位が大きいため,遮音性能の向上が図れると考 えた。

3. ゲルがパネルの遮音性能に与える影響

3.1 試験体

Fig. 3に実験に用いた試験体を示す。試験体のパネル には小面積のアルミ板(厚さ:1 mm)を用い,固定枠か らゴム板を介してパネルの周囲を弾性支持した。

パネルに固定されたアングル,および固定枠に固定さ れたアングルを対向して配置し,その両アングルの間に ゲル(接触面積:50×8 mm²,厚さ:5 mm)を設置するこ とで,2章で述べた構成案を実現した(Photo 1)。

3.2 実験方法

Fig.4に測定装置を示す。無響室内に設置した長さ1500 mmのダクト(内寸: 350×350 mm)のフランジにパネルと固定枠等を固定した。ピンクノイズを音源とし、ダクト端部のスピーカから出力した。

端部にパネルがない場合とある場合との測定点におけ る音圧レベル差から挿入損失を測定し、これを遮音性能 とした。また、ゲルがある場合は、音源出力を、基準と

Fig. 3 ゲルを用いた遮音構造のパネル Sound Insulation Panel with Gel

Photo 1 ゲルを用いた遮音構造のパネル Sound Insulation Panel with Gel

Fig. 4 測定装置 Measuring Device

Table 1 挿入損失の測定パターン Measurement Conditions of Insertion Loss

Weasurement Conditions of misertion Loss		
試験体	減衰材	ピンクノイズの
		出力レベル
アルミ板1mm厚	ゲルあり	-10dB, 基準, +10dB
(弾性支持)	ゲルなし	基準

したレベルから-10 dB, +10 dBとしたパターンも測定 した。Table 1に挿入損失の測定パターンを示す。なお, パネルの振動状況を確認するため,ゲル付近の振動加速 度レベルを測定し,これから変位振幅を算定した。さら に,パネル中央付近の駆動点インピーダンスレベルを測 定した。

3.3 実験結果

Fig. 5にゲルなし/ありの駆動点インピーダンスレベルを示す。ゲルなしの場合,固有振動数は63 Hz帯域にあるが、ゲルありの場合には、80 Hz帯域まで高くなった。これはゲルを付加したことによって、パネルの剛性が高くなったためだと考えられる。125 Hz帯域付近に反共振によるインピーダンスレベルの上昇が見られ、より高い周波数域ではパネルの質量と支持部のバネによるピーク・ディップが見られた。また、ゲルありのピーク・ディップは、ゲルなしと比べてやや緩やかになった。

Fig.6に各測定パターンの挿入損失を示す。ゲルなしの 場合,固有振動数にあたる63 Hz帯域の挿入損失は小さく なり,125 Hz帯域付近は反共振によるインピーダンスレ ベルの上昇によって大きくなった。ゲルなし/ありの挿 入損失は125 Hz帯域以下で差が見られ,特に63 Hz帯域で は,ゲルありの挿入損失がゲルなしと比べて10~15 dB程 度大きくなった。一方で160 Hz帯域から高い周波数では 差がなくなり,質量則(Fig.1参照)に沿うような右上が りの傾きで挿入損失が大きくなった。

Fig. 7にゲル付近の変位振幅の周波数特性の結果を示 す。いずれの測定パターンでも、低周波数域である63 Hz 帯域付近の変位振幅が中~高周波数域より相対的に大き い。また、ピンクノイズの出力レベルが大きいと、音圧 加振によるパネルの変位振幅は大きくなり、63 Hz帯域の 挿入損失が増加した(Fig. 6)。変位振幅の増大に伴って、 挿入損失が増加したと考えられる。

以上の結果から,減衰材としてゲルを用いる場合,変 位振幅が大きい低周波数域で挿入損失が大きくなること, および音圧加振の大きさによって挿入損失が変化するこ とが確認された。

4. ゲルの面積や厚さを変えた場合の影響

4.1 ゲルの設置パターン

Fig. 8に示すように、3.1節で述べた試験体におけるゲルの設置パターンCase 1に加え、Case 2~5の設置パターンでの遮音性能を確認した(Photo 2)。なお、Case 0はゲルがない場合である。

Case 1に比べて, Case 2は接触面の長辺方向を短くし, 接触面積を小さくしたパターン, Case 3はCase 2と接触 面積は同じだが,2等分したゲルを等間隔に設置したパ ターンとした。これは接触面積が大きいほど,ゲルの減 衰効果も増大すると予想し,また設置方法の違いによる 影響についても検討するためである。

Case 4, 5は, それぞれCase 1, 3のゲルの厚さを2倍に したパターンとした。Fig. 9に示すように, Case 1~3は Case 4, 5と比べて, 厚さが1/2倍であるため, せん断変形 により生じる角度は2倍になる。つまり, せん断ひずみ(γ) が大きくなるため, ゲルによる減衰効果も増大すると予 測したことによる。

4.2 実験方法

3.2節と同様の方法で、挿入損失とゲル付近の振動加速

Fig. 8 ゲルの設置パターン Installtion Patterns of Gel

度レベルを測定し,振動加速度レベルから変位振幅を算 定した。さらに,パネル中央付近を加振した時の駆動点 インピーダンスレベルを測定した。

4.3 実験結果

Fig. 10にCase 0~5の駆動点インピーダンスレベルの周 波数特性を, Fig. 11に挿入損失の周波数特性を, Fig. 12 にゲル付近の変位振幅の周波数特性を示す。

Fig. 10の駆動点インピーダンスレベルを見ると,3.3節 と同様に,固有振動数は63 Hz帯域または80 Hz帯域にあ り,125 Hz帯域付近に反共振によるインピーダンスレベ ルの上昇が見られた。これらはFig.11の挿入損失の各当 該帯域におけるピーク・ディップと対応している。また, 挿入損失は160 Hz帯域から高い周波数域で差がなくなり, 質量則に沿うような右上がりの傾向になったが,125 Hz 帯域以下では差が見られた。特にFig.12の変位振幅が大 きい63 Hz帯域で,Case1~5の挿入損失はCase0(ゲルな し)と比べて5~14 dB程度大きくなった。

Fig. 11の63 Hz帯域で,ゲルありの挿入損失がCase 1, 4>Case 2, 3>Case 5の順であった。Case 1,4は全設置パ ターンの中で接触面積が同じく最大である一方で,Case 1はCase 4よりせん断ひずみが大きいため,Case 1>Case 4の順で挿入損失が大きくなると予想されたが,同程度に なった。この結果については,今後さらなる検討が必要 である。Case 2,3はCase 1,4より接触面積が小さいため, 挿入損失はCase 1,4>Case 2,3となったと考えられる。 Case 2とCase 3の差が小さいことから,挿入損失は,同一

Fig. 9 ゲルの厚さとせん断ひずみγの関係 Relationship Between Gel Thickness and Shear Strain

Photo 2 Case 5のゲルの設置パターン Installtion Patterns of Case 5

Fig. 10 Case 0~5の駆動点インピーダンス Driving-point Impedance in Case 0-5

Fig. 11 Case 0~5の挿入損失 Insertion Loss in Case 0-5

Fig. 12 Case 0~5のパネルの変位振幅 Displacement Amplitude in Case 0-5

接触面積であれば、設置方法の違いによる差は見られなかった。Case5はCase3と同じ接触面積であるが、せん断ひずみが小さいため、挿入損失はCase3>Case5となったと推察される。

以上の結果から,減衰材としてゲルのような内部損失 を有する粘弾性体を用いる場合,接触面積や厚さを変え ることで,挿入損失が変化することが確認された。

5. ゲルに圧縮変形を加えた場合の影響

5.1 ゲルの圧縮方法

ゲルにあらかじめ圧縮変形を加えた場合の遮音性能を 確認した。3.1節で述べた試験体のゲルをC型クランプで 圧縮し、その圧縮されたゲルの厚さを測定することで圧 縮変形を管理した(Photo 3)。なお、所定の厚さが得られ た後、C型クランプは取り除いた。測定は、非圧縮時に5 mm厚のゲルを圧縮して、4 mm、3 mm、2 mm厚となるパ ターンで行った。

5.2 実験方法

3.1節と同様の方法で、挿入損失を測定した。

5.3 実験結果

Fig. 13にゲル非圧縮/圧縮の挿入損失の周波数特性 を示す。ゲルを圧縮した場合,変位振幅が大きい63 Hz帯 域の挿入損失は,非圧縮の場合より5~13 dB大きくなっ た。また,圧縮変形が大きいほど,63 Hz帯域の挿入損失 は大きくなった。

以上の結果から,減衰材としてゲルを用いる場合,圧 縮変形を加えることで,挿入損失が変化することが確認 された。実大の遮音壁に減衰材を用いた遮音構造を適用 する際に,このあらかじめ圧縮変形を加えて厚さを変え る方法等を組み合わせ,適切な範囲に減衰効果を調整で きる可能性があると考えられる。

Photo 3 実験時の圧縮変形の管理方法How to Manage Compression Deformation

6. まとめ

低周波数域において遮音壁の面外方向の変位が大きく なることに着目し、生じた変位を減衰材で吸収すること で遮音性能の向上を図る方法について検討した。減衰材 としてゲルを付加したパネルを用いた実験的検討により 得られた知見を以下に示す。

- 減衰材としてゲルを用いる場合,変位振幅が大きい低周波数域で挿入損失が大きくなった。また音圧加振の大きさによって、挿入損失が変化した。
- ゲルの接触面積や厚さを変えることで、挿入損失 が変化した。
- ゲルにあらかじめ圧縮変形を加えることで、挿入 損失が大きくなった。

実大の遮音壁に減衰材を用いた遮音構造を適用する際 に、このあらかじめ圧縮変形を加えて厚さを変える方法 等を組み合わせて、適切な範囲に減衰効果を調整するこ とで、遮音性能を向上できる可能性があると考える。今 後も継続して、詳細なメカニズムの解明や実用化に向け た実験・解析に取り組みたい。

Fig. 13 ゲル非圧縮/圧縮の挿入損失 Insertion Loss for Uncompressed /Compressed Gel

参考文献

- 西村正治:薄膜と空気圧を利用した遮音量可変型軽 量遮音構造,音響学会誌, Vol. 71, No. 10, pp. 546-553, 2015
- 杉江聡,他:ヘルムホルツレゾネータを用いた乾式 二重壁の低域共鳴透過の軽減,日本音響学会講演論 文集,pp.1155-1158,2013.3