Development of the Physical and Chemical Observation Methods and Application for the Samples in the Simulated High-Level Nuclear Waste Disposals

Abstract
A high-level nuclear waste disposal is planned to be constructed at deep underground (approximately 500 m). It comprises a multiple barrier system made of a waste canister, sealing clay, the supporting concrete and plug concrete, and the surrounding host rock. Specifically, concrete contains soluble alkali ions, and their contact with the clay and host rock is a concern. Over a long term, the interaction between the alkali ions and clay increases the degradation of the clay, which loses its function of sealing. To observe the interaction area, the authors develop a micro-scale observing method combining high-resolution X-ray computer tomography and local X-ray diffraction. Simultaneously, a full-scale engineering barrier experiment is performed at the Grimsel test site in Switzerland. The authors apply the observing method to an interface mortar used as a plug and bentonite used as sealings. Accordingly, the visualized boundary area exhibit the porous and fusion of materials.
外壁検査システム「ウォールチェッカー®」の開発

Development of High-Efficiency Outer Wall Inspection System

概要
外壁検査の定期報告制度が改定され10年が経過した。しかしながら、検査員不足に起因する外壁検査の費用の上昇や検査時における入居者への合意形成の難しさ等の課題が残る。このような問題を解決するために、従来の人工検査よりも効率よく、検査精度の高い自動システムの開発が求められている。そこで、全面打診に対応できる新たな自動検査システムを開発した。開発システムは、左右の伸縮可能な検査アーム部と本体下部のスライダー部をそれぞれ横移動する3基の検査機構を装備する。これにより、従来の自動検査システムでは対応不可能な移動障害物周辺の検査が可能となり、最大検査幅での検査が可能な壁面では検査効率が大幅に向上する。筆者らは開発システムを実在物の外壁検査に適用し、従来の検査により検査結果を比較した。その結果、従来の検査より検査効率が高く、その診断結果は十分に信頼できることを確認した。

Abstract
Performing an external wall inspection of a building is dangerous, and significant diagnosis is necessary. The latter is because an inspector typically uses a temporary gondola and inspects all the surfaces of the buildings. In this research, the authors developed an external wall inspecting system that has inspecting arms elastic that are in the left and right. This system could examine all the tiles of the considered external wall of a building, avoiding obstacles, and could acquire the images of all the tiles. In this paper, we describe the outline of this system and the efficiency obtained from the result of applying this system to an actual building.

画像計測及び非線形FEMによるRC構造物のひび割れ性状評価

Cracking State of RC Structure Evaluated by Image Measurement and Non-linear FEM

概要
地震時または地震後のRC構造物の損傷の評価を行う手法として、従来から最大ひび割れ幅に着目した評価が行われてきたが、本論文では、更なる評価指標としてひび割れ面積を用いることを提案した。これらひび割れ性状を定量的に評価する手法が求められる。本論文では、画像計測及び非線形FEM解析によるひび割れ性状の評価精度を検証するため、RC造築壁の載荷実験を行い、ひび割れに関するデータを取得した。クラックスケールを用いたひび割れ観察や画像計測を行い、画像計測によるひび割れ幅の計測精度について検証するとともに、壁の変形とひび割れ幅・面積の相関性について考察した。また、分散ひび割れモデルを適用したFEM解析結果から、壁の面積の増分を算定することで、壁のひび割れ面積を評価できることを示した。

Abstract
The maximum crack width is frequently used as a damage indicator for reinforced concrete (RC) structures during and after an earthquake. The authors propose to use the crack area derived from the image measurement or non-linear finite element analysis for the evaluation of the damage to RC structures. Therefore, the cyclic loading experiments of RC walls were conducted, and the crack width of the wall was measured using a crack scale and image measurement. The experimental results showed that the image measurement was effective to capture the cracking state of a wall, and there was a correlation between the crack width/area and drift angle. In comparison, the analytical results exhibited that the wall crack area could be evaluated by the wall area increment.

画像計測によるひび割れ幅分布と実験結果の比較

Comparison of Measured Crack Distribution and Crack Sketch

障害物（看板）を設けて検査する「ウォールチェッカー®」
Inspection System Avoiding Obstacles
安定液の自動測定技術の開発

Development of Automatic Measuring Apparatus for Stabilization Slurry

概要

アースドリル工法などの場所打ちコンクリート杭における基礎工事においては、ペントナイトとCMC（カルボキシメチルセルロース）を主体に作製される安定液が使用される。杭工事における安定液の働きは、掘削孔壁を保護することとコンクリート打設時の良好な置換流体となることである。安定液は砂分を砂洗機や土砂分離機で除泥しながら循環して利用されるが、その性能を維持するために、比重、粘度、砂分を測定して管理する必要がある。これまで、安定液の性状は1日に1回、断続的に測定され、安定液の不具合が発生した場合の正確な時刻や要因が特定できなかった。筆者らは、安定液の比重、粘性、砂分を連続的に自動測定できる測定装置を開発した。本装置により、安定液の劣化兆候の早期発見、安定液性状の情報共有が可能となり、安定液の劣化による品質低下、施工遅延のリスクを回避することができる。

Abstract

A stabilization slurry, which is composed of bentonite and a CMC (carboxymethyl cellulose), is used in the excavation for a cast-in-place concrete pile work. The functions of the stabilization slurry in a pile construction are the protection of digging walls and replacement by cement. A stabilization slurry is used in a recirculation system for removing the dug earth with a sand separator. The values, specific gravity, viscosity, and sand content of the stabilization slurry should be measured to maintain its performance. We developed an automatic and continuous measurement apparatus based on the property of the stabilization slurry. Accordingly, it could detect the early deterioration sign of the stabilization slurry and share the information of its properties. Moreover, it could prevent the risk of degradation of the structure.

化学イメージングセンサを用いた
ペントナイト間隙水のpH測定手法の開発

Development of pH Measurement Method of Pore Water in Bentonite Using Chemical Imaging-Sensor

概要

放射性廃棄物処分では、人工バリアであるペントナイトが、セメント系材料から浸出する高アルカリ水で、陽イオン交換反応や溶解などにより化学変質し、本来期待されている能力が劣化することが懸念されている。pHは変質の重要なひとつの指標であるが、現在、ペントナイト間隙水のpH変化を連続的に計測する手法がない。そこで我々は、pH計測手法のひとつであるLAPSを用いた化学イメージングセンサに着目し、ペントナイト間隙水のpH変化の計測手法を検討した。高アルカリ環境下でも安定した電位を測定するために、参照電極を白金電極に、ペントナイトの膨潤圧によるセンサの変形や剪断を防止する測定手法を見出した。結果、ペントナイト間隙水のpHの経時変化を計測することができ、その適用性を確認できた。

Abstract

In radioactive waste disposal, the expected decrease in the ability of bentonite is a concern. This is because bentonite might alter the chemistry of the cation exchange and cause dissolution with the high alkaline leaching from the cementitious materials. Although pH is an important index parameter, there is no method to continuously measure the pH change of bentonite pore water. Therefore, we focused on a chemical imaging sensor. To measure a stable electric potential under a high alkali content, we established a test measure method by using a platinum black electrode and prevented the deformation and shearing of the sensor due to the swelling pressure. Thus, we could continuously measure the pH change of bentonite pore water and confirm its applicability.
数値解析によるダウンバーストの流れ場の再現と数式モデルの構築
Numerical Study and an Empirical Model of Downburst Flow Fields

概要
近年、日本の強風やダウンバーストなどの突風災害がしばしば発生し、人・物の被害を引き起こしている。ダウンバーストは風向が突然変化すること、また風速の最大ピーク値が地表面付近で発生することなど、台風や低気圧による強風とは異なる性質をもつため、一般的な気象設計で想定されている境界層乱流とは違った性状を示す。本研究では、数値解析を行い、詳細なダウンバーストの流れ場を検討し、ダウンバーストのピーク風速の特性を明らかにした。また、ダウンバーストの風速を予測する既存の数式モデル（OBVモデル）を基に、数値解析結果より数式モデルのパラメータを求めることで、ダウンバーストの非定常性を考慮した数式モデルを提案した。検討方法がなく未知であったダウンバーストによって建設サイト周辺に生じる風の状況を推定できるようになった。

Abstract
The wind characteristics of downbursts are quite different from those of turbulent boundary layers. Non-stationarity (e.g., an intense, moving downdraft and a strong divergent outflow near a ground) causes severe damage to buildings and structures. In the present study, we conduct a series of computational fluid dynamics (CFD) simulations of downbursts using a large Eddy simulation (LES) to investigate the characteristics of their peak wind velocities. An empirical model based on the OBV model (Oseguera and Bowles, 1988; Vicroy, 1991) is also proposed in the paper; in the model, the parameters are empirically determined based on the results of the LES of downbursts. It is found that the proposed empirical model yields velocity distributions consistent with those obtained from LESs.

矩形プールを対象としたスロッシング発生時の挙動評価技術
Wave Height Evaluation Method of the Sloshing Phenomenon in Swimming Pools

概要
高層建物の上部フロアにプールを計画する際には、設計の時点でスロッシングに対する検討が求められる。建物の固定振動数とプールのスロッシングの固定振動数が一致すると、共振が発生しプールの水面がこぼれ、プール周辺のフロアに影響するだけでなく、外装ガラスへの影響も懸念されるためである。スロッシングの固定振動数や最大波高の推定式としては矩形タンクを対象とした推定式がある。ここではタンクに比べて水深の深いプールに対する適用可能性の検討を、水槽実験と数値流体解析を用いて行った。その結果、既存の適用が可能であることを示した。一方で、推定式では最大波高を過大評価してしまう可能性も示した。スロッシングの共振現象は、プールと建物の固定振動数の比に敏感な現象であるため、ここで示した式は概略の検討時には有効であるが、詳細な検討には数値流体解析を行う必要がある。

Abstract
Designers planning a swimming pool on the upper floors of a building are required to consider the sloshing phenomenon. This is because the water of the pool significantly affects the building by the sloshing resonance phenomenon. Some existing estimation formulas for a rectangular tank are the formulas of the sloshing natural frequency and maximum wave height. In this study, the validity of the formulas is examined using tank experiments and computational fluid dynamics. We found that the experimental and analytical results are roughly equivalent to the values estimated from the formulas. However, the formula may overestimate the maximum wave height in some cases. The sloshing resonance phenomenon is relatively sensitive to the pool and building natural frequency ratio. Therefore, computational fluid dynamics is required for a detailed study.
超高層建物を対象とした風揺れ居住性評価用風速に関する研究

Wind Speed for Evaluating Habitability to Wind-induced Vibration of High-rise Buildings

概要
超高層建物を対象として、風揺れ居住性を評価するための風速設定方法について検討した。都内においてドップラーライダースを用いた風観測を行い、2017年の台風18号時の強風について考察した。また汎用気象モデルによる数値シミュレーションをおこない、ドップラーライダーの観測結果との比較検証をおこなった。気象モデルによる結果はドップラーライダーの観測値よりも高い値を示した。また、気象モデルの5年間の間隔計算から再現期間1年の風速を算定し、結果を日本建築学会の指針と比較した。気象モデルの結果と建築学会指針で示される風速は大きな違いはなく結果は妥当であると考えられる。国内の地方にて同様の長期計算を実施し、再現期間1年の風速分布を示した。

Abstract
In this study, a method to evaluate wind speeds for use in the habitability assessments of high-rise buildings against wind-induced vibration was considered. Numerical simulations were performed using a meteorological model (WRF), and the results were compared to the observed values by Doppler LIDAR (Light Detection and Ranging). The results from the WRF simulation exhibited good agreement with the observed values by Doppler LIDAR. From the results of the long-term WRF simulations, we calculated the one-year return period wind speeds and compared them to the recommendations of the Architectural Institute of Japan (AIJ). The same long-term calculations were performed for four districts in Japan, and in this paper, the distributions of the one-year return period wind speeds are presented.

地上350m高さでの再現期間1年の風速分布（関東地方）
Contours of 1 Year Return Period Wind Speed at 350m above the Ground (Kanto)

ゾーンモデルを用いた大規模群集避難性状の予測

Prediction of Evacuation Property of Large-scale Crowd Using Zone Model

概要
建物火災時において当該建物から避難する在館者の集団を「群集」ととらえ、単位空間（ゾーン）の収支を考えるゾーンモデルにもとづく避難性状予測手法を開発した。ゾーンモデルの特長は以下の3点である。
1. ゾーンというマクロな視点を用いたことで計算負荷を抑えられ、短時間での検証が可能となる。
2. 実態に近い避難性状を再現できることを目的としたゾーンモデルが有する特徴。
3. 避難行動を考慮したゾーンモデルが有する特徴。
本報では、まずゾーンモデルの概要を示す。そののち、過去の避難実験データを用いた検証の一例を示すとともに、スタジアムを用いた大規模群集避難性状に関するケーススタディを示す。

Abstract
We developed an evacuation property prediction method based on a zone model considering the balance of the number of people per unit space (zone). The features of this method are the following three points: (1) It is possible to study in a short time because the computational load is low. (2) The prediction accuracy is good. (3) By outputting the information in each zone obtained in a time series, it is possible to intuitively predict when and where stagnation occurs. In this paper, we present the outline of the zone model, accuracy verification using the results of a previous evacuation experiment, and case study of an evacuation from a stadium.

スタジアムの避難性状予測の一例
Example of Evacuation Property Prediction of the Stadium
新型ポアホールレーダによる場所打ち杭の出来形の可視化

Visualization of Finished Shape of Cast-in-place Pile by New Borehole Radar

概要
場所打ち杭は、地盤中に作成された孔内に、鉄筋を挿入してコンクリートで打設することにより作る。この形状と偏波波測定により確認し、杭の出来形の確認は一般的に行われる。将来の品質確認の一つとして、解析を進めることで、杭の位置や長さの確認の必要性を示す。杭表面の出来形を確認できる新型ポアホールレーダを開発するとともに、評価精度を向上できる試験方法を新たに考案した。本技術の検証のため、場所打ちコンクリート杭工法で作製した試験体を対象に、地中試験体にポアホールレーダ試験を実施した。杭表面の出来形の実測結果と比較し、本技術の有効性を確認した。

Abstract
In the construction of cast-in-place piles, after inserting a rebar cage into the holes previously drilled in the ground, concrete is cast. In general, confirmation of the finished shape after concrete placement is frequently omitted by confirming the shape of the drilled hole by ultrasonic measurement. In recent years, the need for quality confirmation has been increasing. Therefore, for visualizing the finished shapes of cast-in-place piles, we developed a new borehole radar and devised a new test method. To examine this technology, borehole radar tests were conducted for actual cast-in-place piles in the air and under the ground. The effectiveness of this technology was confirmed by comparing the results with the measurement result of the finished shape of the pile surface.

既製コンクリート杭の支持層到達確認技術の開発

Development of Bearing Stratum Arrival Confirmation Techniques for Bored Precast Concrete Piles

概要
本稿では、既製コンクリート杭の支持層到達確認について検討を行い、以下の結果を得た。1) 現在広く用いられている積分電流値の問題点に対応し、積分電流値による支持層判別を補完するための新たな指標(補正積分電流値、t 検定による指標および STA/LTA による指標)を開発した。補正積分電流値を用いることで、試験断面積と試験断面積の積分電流値への影響を補正できることが確認した。2) 積分電流値の変化を表す指標として、t 検定による指標および地震波検知で用いられる STA/LTA による指標が有効であることを示した。3) これらの指標を取り込んだ杭支持層を確認するためのシステムを開発した。4) 今後のシステム改良に向けて検討している機械学習を用いた N 値の推定について示した。

Abstract
In this paper, the developed bearing stratum arrival confirmation techniques are presented. 1) A modified integrated ammeter value based on a conventional integrated ammeter value that is currently used in construction sites is proposed as a new indicator. The modified integrated ammeter value improves the generality by normalizing the borehole diameter and correcting the effects of the drilling water in comparison to the conventional integrated ammeter value. 2) Then, a t-test indicator and an STA/LTA indicator are introduced. These indicators quantify the break point versus the drilling speed. 3) This paper also describes a bored pile construction management system as an application of these indicators. 4) The paper also discussed an investigation with a machine learning approach performed to estimate the SPT N-value using drilling records.
自走式孔内観察ロボットによる
水平ポーリング孔内の可視化

Visualization of Horizontal Borehole by a Self-Propelled Borehole Inspection Robot

藤岡 大輔 Daisuke Fujioka
中岡 健一 Kenichi Nakaoka
森 拓雄 Takuo Mori

概要
ノンコア剝孔操作では、コアを採取せずに切羽前方の地質を把握することができる。加えて、その孔内を観察することで風化・変質や割れ目等の状態といった構造式の原因を特定でき、ノンコア剝孔操作の信頼性が向上する。水平ポーリング孔の孔内観察と孔壁測温を可能にするため、孔内観察ロボットを開発した。このロボットは、φ85mm以上のポーリング孔内自走し孔内の状況をリアルタイムで観察することができる。ノンコア剝孔層厚を測定した結果、孔内映像と剝孔データを比較することで、孔壁に亀裂や剥れはなく良好な地山であることを確認できた。また、剝孔ポーリング孔にも適用した結果、定速で進行することにより孔壁観察を可能、コア写真から得られなかった亀裂の方向を示すことができ、ポーリング調査結果の信頼性向上に寄与した。

Abstract
A self-propelled borehole inspection robot was developed for borehole observation and generation of unfolded borehole images for visualization of a horizontal borehole. While traveling through a borehole of 85 mm or more in diameter, the self-propelled borehole inspection robot observed the borehole geological conditions in real time. From the experiments with a non-core drilling exploration, by comparing the borehole images and drilling data, good geological conditions without cracking or collapse could be confirmed. Based on the experiments with a core borehole, by generating unfolded borehole images, it was possible to acquire the strike and dip of a crack, which could not be obtained from the core photo. This contributed to the improvement of the reliability of the boring survey results.

自走式孔内観察ロボット
The Self-propelled Borehole Inspection Robot

トンネル切羽前方探査による地山等級の
三次元可視化

Three-dimensional Visualization of Ground Classification Ahead of a Tunnel Face by a Geological Exploration System

板場 建太 Kenta Itaba
中岡 健一 Kenichi Nakaoka
森 拓雄 Takuo Mori

概要
山岳トンネル工事において、掘削作業の安全性確保と支保工の合理的な選定のために切羽前方の地山情報の把握は重要である。地山情報はノンコア剝孔などの前方探査により把握できる。大林らは剝孔速度に着目した独自のノンコア剝孔法（トンネルナビ）を開発した。これまでの前方探査は1箇所の結果をパーソンナルコンピュータに記録した。今回、より詳細な前方地山の把握を目的に1箇所の前方探査を行い、地山の変化を示す地山地質断面図を作成した。この結果をトンネルナビの情報処理システムに取り入れ、施工中の地山変化をリアルタイムで把握するシステムを開発した。トンネルナビ3Dコンターレシステムにより、トンネル内の掘削進行方向を示す。

Abstract
For a safe and rational mountain tunnel excavation, the geology ahead of the tunnel face must be captured in detail. The Obayashi Corporation has developed Tunnel Navi (TN), focusing on the drilling velocity of a non-core drilling exploration. However, the ground classification obtained by TN is based on one-line exploration results. Recently, a site has been developed that performs three TN lines for obtaining the geology ahead of a tunnel face in more detail than by the conventional method. The Obayashi Corporation has developed a space interpolation system by a Gaussian regression process, capable of visualizing the results of three or more TN runs in three dimensions. Thus, the geological soft points ahead of a tunnel face can be revealed more easily by geological exploration than before.

トンネルナビ3D コンター
Three Dimension Contour of Tunnel Navi

25
三次元地層推定手法による地盤構造の可視化

Visualization of Ground Structure via 3D Stratum Distribution Estimation

東京理科 Rihito Kojima
高橋 一 Shinichir Takahashi
森尾 義彦 Yoshikiko Morio
株式 由利 Yoshinori Hagiwara
渡辺 和博 Kazuhiro Watanabe

既製材の設計・施工に三次元地層推定を用いた事例
3D Underground Structure for Designing and Constructing PCa Piles

AIによる免震基礎コンクリートの
空気自動検出手法

Automatic Detection of Air Bubbles with Artificial Intelligence

中林 拓馬 Takuma Nakabayashi
木村 一香 Koji Wada
（本社建築部特殊工法部）
内海 良和 Yoshikazu Utsumi
（本社建築部特殊工法部）

提案手法により得られた結果
Result of Prototype System

概要

地盤情報データベースの公開や利用環境の整備が推進されている。このような情報を利用して地盤構造を三次元的な可視化すれば、複雑な地質構成に伴い発生する地盤リスクを大幅に低減できる。三次元的な地盤構造は、ポーリングや掘削情報から三次元的な地質情報として地質境界面の形状を推定することがで構築される。利用に際しては、その推定手法の特徴を理解するとともに、推定した地盤情報の信頼性を常に考慮することが重要である。本報告では、建設工事での利用にあたり、三次元地層推定手法を用いた地質構造の可視化技術の基本的な特徴とその課題を例示しながら、三次元地層推定法を補強する数値解析技術を含めた総合的な地盤リスク低減のための検討フローを提示した。

Abstract

Visualization of ground structures via a three-dimensional (3D) stratum distribution estimation is expected to help decrease geotechnical risks, particularly in a complex ground structure. It is important to use 3D models by understanding their characteristics and reliability. This is because a 3D stratum distribution estimation is a type of interpolation of the point data obtained from a boring survey. In this study, we discuss the features and issues of the existing estimation method with examples. We also discuss a microtremor measurement as a supplementary survey method for 3D stratum distribution estimation. Finally, we propose a comprehensive examination procedure of the ground structure visualization.

概要

近年、免震装置を取り付け地震の揺れを建物に伝えにくくする免震構造のニーズが高まっている。免震装置の設置時には、免震基礎と免震装置の接合部であるベースプレートを取り付け面の空気混入率が、設計者が定めた値を満たしていることを確認する必要がある。実際の施工後はベースプレートを取り除くことはできないため、現場で実物大の試験体を作成しベースプレートを取り除いたうえで空隙混入率を確認する必要があるが、この試験の合否を得るまでには非常に多くの作業を要している。大林組は、画像認識技術と人工知能技術を組み合わせ、本試験の空隙率算出のための各作業を自動化し大幅な工数削減を実現する手法を開発した。本手法を用いることで、正確な面積算出のための面積処理、空隙率の算出、空隙面積の算出などの一連の作業のほとんどを自動化することができる。本報告では、この手法の概要と精度・効率検証結果の紹介を紹介する。

Abstract

Currently, the demand of a seismic isolation structure that can reduce the quake of earthquakes is increasing. For the reliable construction of a seismic isolation device, the constructors have to examine the rate at which an area of air bubbles is found underneath the baseplate. If the rate is less than the threshold, which is decided by the designer, in an actual construction phase, it does not allow removing the baseplate to check the rate. Therefore, the constructors have to prepare a specimen to verify the suitability of the construction plan. The numerous tasks required for validation take approximately 1 week typically. We developed a method for the automation of these tasks by using both conventional image processing techniques and artificial intelligence techniques. By using this method, we could automate most of a series of operations, such as image preprocessing for accurate area calculation, extraction of air bubbles, and calculation of the rate of the air bubbles. This report presents an outline of this method as well as the result of the accuracy and effect validation.
地震後の建物安全性判定支援システム
「ポケレポ™」

Building Safety Determination Support System after Earthquake “Pocket Repo”

概要
建物安全性判定支援システム「ポケレポ」は無線加速度計を用いることでケーブル敷設を不要とし、既存建物への適用を容易にしている。さらに、クラウドサーバーを用いることで複数建物の一括管理を容易にし、利便性を高めている。ポケレポは新築建物を問わず簡易に適用可能であるため、より多くの建物に適用し地震後の建物安全性を可視化することで、建物管理者が安全性情報に基づいた避難要否判断をこれまでより容易に実施できると考えられる。

Abstract
The building safety determination support system after earthquake “Pocket Repo” reduces the labor of wiring cables during application to the existing buildings. Furthermore, this system makes the collective management of multiple buildings easy by using a cloud server. Building managers can easily determine the necessity of evacuation from a building based on the safety determination support information provided by Pocket Repo.

室内音響設計・騒音対策検討の可視化・聴覚化技術
Visualization and Auralization Technology for Room Acoustic Design and Noise Control Study

概要
大林組は、建物の品質向上や周辺環境影響の低減のため、音響性能確保や騒音防止に係る設計・施工技術を、長年にわたり保有・展開してきました。音の問題は聞いてみないと分かりにくいため、建物の計画時に問題の対策の検討は大切である。本報では、屋内環境と屋外環境におけるこれからの音響性能の向上策を通じて、これらの技術を紹介する。

Abstract
For a long time, the Obayashi Corporation has been developing design and construction technologies aimed at securing acoustic performance and preventing noise to improve the quality of buildings and reduce the environmental impact. It is difficult to understand the problem of sound without listening, Therefore, when it is originally difficult to listen, such as when planning a building or before taking measures for problems, the key to problem solving is finding a method to easily explain to customers and stakeholders and develop that understanding.

Therefore, the Obayashi Corporation has developed a technology to visualize and auralize the problem of sound, and used it to solve the problem in the above-mentioned scenarios.

In this report, we introduce these visualization and auralization technologies for indoor and outdoor environments.

上部のガラス窓や風呂との取合いで、音が聞れない事が分かる。

音響対策における可視化技術の適用例
Application Example of Visualization Technology in Sound Insulation Measures
深層學習によるトンネル切羽評価

Tunnel Face Evaluation by Deep Learning

概要

山岳トンネルでは、設計段階での事前調査技術の限界や地質の複雑性から、施工時の切羽状態を基に、実質の地質特徴に合致するような支保規格に修正している。したがって、地質の成因に基づく力学的・水理学的特徴を可能な限り正確に読み取ることが必要である。本研究では、切羽評価の合理化を目指し、近年注目を集めているAI技術を適用した、深層学習の一つであるディープニューラルネットワークを適用し、切羽画像を用いて強度、風化変質や割れ状態など7項目を判別させると、技術者が判定した結果に対し73%以上の精度で整合する結果を得た。したがって、AIを利用した切羽評価法の実用化のめどが立った。

Abstract

In a tunnel, an engineer observes the tunnel face under construction and identifies the appropriate support members. For this purpose, it is necessary to accurately grasp the geological condition. In this study, an artificial intelligence (AI) technology was examined to reasonably evaluate the tunnel face. Using a deep neural network (DNN), which is a type of deep learning, seven geological characteristics were estimated, including the rock mass strength, weathering alteration, and fracture condition of the tunnel face images. Thus, a precise score of over 73% was obtained when compared to an engineering determination. Therefore, the practical application of the feather evaluation method using AI was established.

樹脂系混和材料を用いたセメントベースト・土系舗装材の基礎検討

Basic Studies of Cement Paste and Soil Paving Material Using Resin-Based Admixture

概要

本研究は、水分を含む材料と硬化しても硬化性能は低下しない樹脂系混和材料を用いて、樹脂系混和材料を添加したセメントベーストの基礎物性、および樹脂系混和材料を固化材として用いた土系舗装材の適用性を検討した。樹脂系混和材料を添加したセメントベーストは、樹脂の体積比率が30vol.%の場合に、樹脂を混入しない場合に比べて、曲げ強度が2.2倍に上昇した。樹脂系混和材料を用いた土系舗装材は、一般的なエポキシ樹脂を用いた土系舗装材に比べて、著しく高い圧縮強さを示した。従来の土系舗装は、歩道用の舗装として用いられていてが、本樹脂を固化材として用いた土系舗装材は、駐車場などの乗用車が乗り入れる箇所の舗装にも使用できる。景観性と耐久性を併せ持つ土系舗装が実装でき、土系舗装の適用範囲を拡大できた。

Abstract

Cement paste added resin-based admixture, hereinafter referred to “Resin Cement Paste”, and soil added the resin-based admixture, hereinafter referred to “Resin Soil” are developing. This resin-based admixture has the feature of hardening in the water. In this study, the fundamental physical properties of Resin Cement Paste were examined, and Resin Soil was applied to a pavement. Resin Cement Paste has a high bending strength by approximately 2.2 times compared to that in the case without the resin, when the resin volume ratio was 30 vol.%. Resin Soil exhibited a higher compressive strength than soil added a general epoxy resin. Conventional soil paving material are used as pedestrian pavement. However, Resin Soil could be used as pavement of parking space. Soil paving material that combines landscape and durability was realized. It was able to widen soil pavement applicability.
Effects of Steel Fiber and Coarse Aggregate Size on Properties of Ultra-High-Strength Concrete Using Steel Fiber and Polypropylene Fiber

Abstract
Although ultra-high-strength concrete is applied to high-rise buildings, it has the problem of brittle fracture properties. It is known that its toughness can be improved by steel fibers; however, an appropriate method for selecting steel fibers that can prevent brittle fracture is not known. There are numerous unclear points regarding the properties when steel fibers and polypropylene fibers are used in combination. The effects of the steel fiber and coarse aggregate size on the properties of ultra-high-strength concrete mixed with polypropylene fibers were experimentally investigated. Thus, we could develop an ultra-high-strength concrete with excellent toughness and fire resistance by mixing steel fibers, ensuring high fluidity and strength characteristics. By applying this concrete to buildings, safety could be secured at a high level and an added value could be created.

Evaluation of Cyclic Temperature Load Acting on Double Folded Plate Roof

Abstract
Although double folded plate roofs are widely used mainly in production and distribution facilities, they may scatter owing to the fatigue failure of the joints under the temperature expansion and contraction. Moreover, even today, no rational verification method is verified. In this study, to evaluate the cyclic temperature load acting on a double folded plate roof, the corresponding plate roof temperature for three buildings was measured over a one-year period. The results obtained are as follows: 1) The temperature amplitude and frequency of occurrence of the double folded roofs did not differ much in the three buildings. 2) As an evaluation of the cyclic temperature load, the author has proposed a measurement formula to obtain the relationship between temperature and amplitude-occurrence frequency. 3) Temperature amplitudes equal to the measurement data are proposed.
梁貫通型柱 RC 梁 S 架構の
T 形接合部における機械式定着

Mechanical Anchor of Column Main Bar for
RC-S Structure

水越 一晃
Kazuaki Mizukoshi

穴吹 拓也
Takuya Anabuki

銅木 彩夏
Ayaka Suzuki

増田 安彦
Yasuhiko Masuda

概要
柱 RC 梁 S 架構梁上部の T 形柱梁接合部においては、施工の簡便さか
ら柱主体に機械式定着工法が用いられている。定着金物を接合部に
配置する場合は、梁フランジよりも上部に配置する場合に比べて、ふ
さぎ板の拘束効果によって定着金物に生じる圧縮力は増大するため、
定着性状は向上すると考えられる。そこで、定着金物の位置、定着長
さおよびコンクリート強度を変数として、柱 RC 梁 S 架構の T 形接合
部試験体による静的繰返し増截荷実験を行った。その結果、1) 定着金
物の位置によらず、全ての試験体で柱曲げ降伏後に柱主体の定着破
壊が生じたが、層間変形角 ±4% まで柱曲げ降伏耐力計算値の 80% 以
上の耐力を保持する強靭的な破壊を示した。2) ふさぎ板が定着金物を拘
束することによる影響は顕著ではなかった。

Abstract
When applying the mechanical anchor method to the column main bar
for a reinforced concrete and steel(RC-S) structure, the confinement
around the anchor may modify the anchorage performance. Therefore,
static loading tests were conducted to study the relationship between
the anchor length and concrete strength of a beam-column joint,
for which the mechanical anchor plates are set on the outside and
inside. The obtained results were as follows. Although anchorage
failure of the main bars occurred after the flexural yield of the column,
over 80% of the calculated flexural yield strength of the column was
maintained up to a drift angle of ± 4%. However, the effect of the
confinement by the cover plate was not exhibited clearly.

液状化地盤の三次元有効応力解析手法と
固結工法への適用

Three-Dimensional Effective Stress Analysis
Method and Its Application to Cement-Treated
Soil Improvement in Liquefiable Ground

伊藤 浩二
Koji Ito

佐々木 智大
Tomohiro Sasaki

樋口 俊一
Shunichi Higuchi

概要
近年、液状化地盤や RC 造構造物の形状を忠実に再現した三次元要素
を用いた非線形地震応答解析のニーズが高い。このような問題への適
用拡大を目指し、広範な地震の観測系の地震時から地震後までの通
過時変形を考慮、地震を表現する地盤構成モデルを提案。導入した三
次元有効応力解析手法を構築した。本手法を用いた模型比 1/25 の
RC 造構造物の有効応力解析実験を対象とした再解析の結果、地
盤と RC 造構造物との非線形性を考慮した地震応答解析を検証した。
RC 造地中構造物の実構の錠結工法による液状化対策を想定して、液状
化地盤と錠結体および RC 造地中構造物の材料非線形性を考慮した有効
応力解析により耐震補強効果を検討した。錠結体の形状がブロック状
の二次元解析、錠結体の形状が格子状の二次元解析で得られた RC 造
地中構造物および錠結体の地震時応答に基づき、本手法の適用により錠
結工法の改良仕様を合理化できることを示した。

Abstract
This paper describes the numerical procedure of solving liquefiable
ground problems and its verification and application based on a three-
dimensional effective stress analysis method incorporating cyclic
elastoplastic constitutive model of soil. The following conclusions were
drawn from the study: (1) The developed model was extended and
confirmed to reproduce the behavior for various ranges of soil density.
(2) The applicability of the procedure considering the material non-
linearity of both the soil and RC structure was verified, simulating the
centrifuge model test of a RC pile foundation in liquefiable ground
with a similitude of 1/25. (3) The seismic effectiveness of cement-
treated soil improvement adjacent to an underground RC structure
was confirmed based on the response results of the structure and soil
improvement body. Moreover, rational and acceptable specifications
of cement-treated soil improvement were presented.
天井落下防止構法
「フェイルセーフシーリング® III」

“Fail-Safe Ceiling”® III (FSC3)® Fall Prevention Ceiling System

概要
天井落下防止構法「フェイルセーフシーリング® III」（以下、FSC3）は、既存吊り天井の天井板下面にネット状の材料を設置することによって、地震による既存吊り天井の落下を防止する構法である。従来のフェイアルセーフシーリング構法には「フラットパネルネットタイプ」と「ストリンゲタイプの2種類があるが、FSC3は「フラットパネルネットタイプ」のみを対象としている。本稿では、従来構法の適用範囲の主項目である、天井重量、傾斜角度および曲面天井での接線傾斜角の拡大を目的として、各種試験結果に基づいたFSC3の設計法を提案する。提案した設計法に基づき、ネット状の部材の設置間隔を調整することで、FSC3は任意の重量の天井に適用できると共に、傾斜角度90度未満の傾斜天井、接線傾斜角90度以下の曲面天井に適用可能となる。

Abstract
“Fail-Safe Ceiling”® III (FSC3)®, a fall prevention ceiling system, is a technology that prevents ceiling panels from falling during seismic events, by the installation of net components exactly under the existing panels of a suspended ceiling. Two conventional system types have been developed: “flat bar & net” type and “string” type. FSC3 is applicable only to the “flat bar & net” type systems. Conventional systems can only be applied to suspended ceilings with a limited weight, an inclination angle of 30° or less, and a tangential slope angle of 30° or less. FSC3 is expanded to be applicable to ceilings of unlimited weights and to inclined and curved ceiling surfaces with a larger inclination angle than 30°. Static tests of FSC3 were conducted to confirm their strengths. A design method of FSC3 developed based on these tests was applied to suspended ceilings of arbitrary masses by adjusting the installation interval of the net components and to suspended ceilings with an inclination angle less than 90° and a tangential slope angle of 90° or less.

1.4-ジオキサン污染地下水及び士壌の化学酸化処理促進技術
Accelerating Method of Chemical Oxidation for Groundwater and Soil Contaminated by 1,4-Dioxane

概要
有機溶剤である1,4-ジオキサンは、発ガン性が疑わしい物質として、2013年に公共水域や下水道への排出基準が設定され、2017年に土壌環境基準が設定された。この物質は、水から揮発しにくく、生物分解されづらく、活性炭等に吸着性が低い等の特性がある。そのため、原位置バイオ浄化や、地下水揚水によって処理の適用が困難である。そこで、本稿では現場から採取した1,4-ジオキサン汚染地下水及び1,4-ジオキサン汚染模擬汚土を用い新しい化学酸化処理技術の効果を室内実験で評価した。汚染地下水については、分解阻害物質が含まれている条件での化学酸化処理の有効性について、また汚染阻害土については、石灰石併用による酸化処理の促進効果と土壌改良効果があることを明らかにした。

Abstract
1,4-Dioxane which is organic solvent, is presumed as a human carcinogen. Standard of drainage to public water and sewer drainage was also established in 2013. Furthermore, Standard of soil quality was established in 2017. 1,4-Dioxane is nonvolatilizable, hardly biodegradable and hardly absorbed by active carbon. Therefore, it is difficult to clean up 1,4-Dioxane by in-situ bioremediation or groundwater pumping up and aeration treating. This paper showed results of new chemical oxidation degradation to treat 1,4-Dioxane contaminated groundwater in a certain place and simulated 1,4-Dioxane contaminated soil. Developed chemical oxidation methods can treat 1,4-Dioxane contaminated groundwater including chemical oxidation inhibitor. In addition, developed chemical oxidation of oxidant and calcined lime not only can treat 1,4-Dioxane contaminated silty soil effectively but also improve the quality of it.
土壌の分級選別処理における
速効型中性系土質改良材の開発
Development of Fast-acting Neutral-type Soil-Improving Material in Classification of Soils

井出一貴 Kazuki Ide
三浦俊彦 Toshihiko Miura
山田祐樹 Yuki Yamada
高田尚哉 Naoya Takada
（本社エンジニアリング本部）
光本重 Jun Mitsumoto
（本社エンジニアリング本部）

概要
高含水土壌や粘性土壌の分級選別処理のために吸水性高分子を使用した速効型中性系土質改良材「サラサクリーン」の開発を行った。ここでは、本改良材の土壌改良効果と改良土壌の性状について試験検討を行い、以下が明らかになった。本改良材の改良効果は砂質土および粘性土の両者に対して顕著であった。本改良材を用いた砂質土および粘性土の改良土壌は適切な繊維状構造管理を行うことで盛土材等に利用可能であった。また、改良土壌の吸水に対する有効率は、荷重のある条件では小さく盛土材等への利用に影響しないことがわかった。

Abstract
A series of studies was previously performed to develop a new soil conditioner using a superabsorbent polymer for the sorting treatment of high-water-content and cohesive soils. In this study, the effect of the soil conditioner synthesized using the above superabsorbent polymer and the soil characteristics after the treatment are verified. Accordingly, the following conclusions are drawn. The improvement effect by the superabsorbent polymer-based soil-improving material is remarkable for any target soil. A basic examination of the compaction property and consolidation and hygroscopic expansion characteristics of the improved soil is conducted. Moreover, it is found that the improved soil can be used as a banking material if the moisture content is appropriately managed. The expansion due to the water absorption by the improved soil is considered to be a minor effect in its use in an embankment.

壁面沈着を考慮した室内ガス濃度場予測に関する研究
Prediction of Indoor Gas Concentration Considering Wall Surface Deposition

原稿長 Hiroshi Harashima
住吉栄作 Eisaku Sumiyoshi

概要
室内空気中に存在するガス体物質の濃度は、屋外濃度や換気量、壁面沈着、他の物質との反応等を含め、様々な要因に依存する。ガス体物質は様々なあるが、本報ではオゾンを対象とした研究を報告する。オゾンの壁面除去速度やその数値モデル化に関する多くの研究結果が発表されているが、壁面沈着モデルの温湿度依存性についての議論は限られていた。そこで、本研究では、オゾンの換気除去速度や減衰率に関して既往の実験結果を基に議論し、温湿度依存性を組み込んだ修正数値モデルを提案した。

Abstract
The concentrations of gaseous substances in indoor air depends on various factors, including the outdoor concentration, ventilation rate, wall surface deposition, and chemical reactions. In this study, ozone is the target gaseous substance. Although numerous research results concerning the surface removal rate of ozone and its numerical modeling have been published, the discussion on the humidity dependence of a wall surface deposition model for ozone is limited. In this study, the humidity dependences of the deposition velocity and mass accommodation coefficient of ozone are examined based on the experimental results of a previously reported study. Moreover, a revised numerical model incorporating the humidity dependence is proposed.
Development of High-Efficiency Sewage Heat Utilization System for Medium-and Small-Diameter Sewage Pipes

Abstract
The authors have developed a system for laying a sewage heat collection tube inside a sewage pipe while simultaneously rehabilitating the sewage pipe, using a light curing method. This is a sewage pipe rehabilitation technique for medium-and small-diameter (not more than 900 mm) sewage pipes. First, a test model device comprising a 10m long pipe is manufactured at a point 1.8m underground. Furthermore, a quantitative evaluation experiment of the sewage heat collection performance is conducted for a conventional heat collection tube with a wall thickness of 1.5 mm. Next, to improve the heat collection efficiency, a thin-walled heat collection tube with thickness of 1.0 mm is manufactured and installed in parallel to the conventional heat collection tube in the same sewage pipe. Comparative verification experiments of the heat collection performances of both the tubes are conducted, and the improvement effect of the heat collection by the thin-walled sewage collection tube is verified.
トンネルを対象としたクリープパラメータの設定と予測解析

Estimation of Creep Parameter and Tunnel Excavation Analysis

中岡 健一 Kenichi Nakaoka
畑 浩二 Koji Hata

概要
膨張性地山の時間依存挙動を評価し、適切な支保工を設計することによって変状を防止するために、時間領域を持つ数値モデルであるクリープモデルが提案されている。このモデルの実用適用では、クリープパラメータの設定が課題となっていた。そこで筆者らは、パラメータを適応せんとするため、現場で容易に取り扱えるボーリング孔測変位計を開発した。この装置を3つのトンネル施設に用いた結果、いずれの現場のポーリング孔からもクリープによる縮さが計測された。次に、計測結果を対象として円孔モデルによるフィッティング解析を行うことにより、クリープパラメータを設定した。そして、施工過程を考慮した有限差分法によるトンネル掘削解析を行い、現場のトンネル壁面変位や地山、支保工の変状を近似する結果が得られた。以上から、本研究で構築したパラメータの設定方法は実用性があり、支保工の設計に適用できる可能性が高いと判断した。

Abstract
Previously, a creep model was developed to analyze the tunnel stability in a squeezing rock. However, setting the creep parameters was difficult. Measurement of the in-situ creep displacement was required to estimate the parameters. Therefore, we developed a borehole displacement meter to measure the changes in the diameter. Using this equipment, the creep displacements at three in-situ boreholes were measured. Next, the creep parameters were estimated by performing a fitting analysis of the displacements. Tunnel excavation analyses were conducted by the finite difference method using the creep parameters. The trends of the results were similar to those of the onsite measurements of the tunnel displacements. Therefore, it was determined that the above method of setting the creep parameters had potential in practical application.

カーボンナノチューブの宇宙環境曝露実験

Space Examination of Durability of Carbon Nanotube

測田 安浩 Yasuhiro Fuchita
(本社 未来技術創造部)
石川 洋二 Yoji Ishikawa
(本社 未来技術創造部)
人見 尚 Takashi Hitomi

概要
カーボンナノチューブ(CNT)は、鋼材よりも軽く強い材料である。そのため、宇宙レベラーナーのケーブル材料として注目されている。宇宙の過酷な環境下における耐性を確認するため、宇宙空間での曝露実験を行った。CNTを国際宇宙ステーションの外に設置。2年間曝露した。本報告では、観察および実験のCNTの機械的性状、外観および損傷環境での変状に関して、顕微鏡的に分析した。その結果、宇宙曝露によって、CNTの強度低下および表面の欠損が確認できた。宇宙環境での使用に対して、表面からの損傷を防止するため、何らかの表面被覆が必要なことがわかった。

Abstract
We performed experiments to test the properties of carbon nanotubes (CNTs) under the extreme environmental conditions in space. CNTs, which are much lighter and stronger than steel and have the necessary tensile strength to sustain the cable of a space elevator, have attracted our attention as the main material of such a cable. The test CNT samples were exposed to the environment in space by placing them on the outside of the International Space Station for one or two years. An analysis and a detailed examination of the mechanical properties, surface appearance, and durability of both thin and thick CNT yarns that were exposed in space were performed. Their results indicated that the apparent degradation of the CNT yarns might have been caused mainly by the action of atomic oxygen. In addition, the changes in Young’s modulus were negligible. The necessity of adopting measures to protect a CNT cable against the space environment was also noted.
次世代高速通信 5G を用いた重機の遠隔操縦の高度化

Sophistication of Remote Control of Heavy Machinery With the Next-Generation High-Speed 5G Communication Technology

古屋 弘 Hiroyoshi Furuya
岩下 正剛 Seigo Iwashita
（西日本ロボティクスセンター）
陣内 英二 Eiji Jinnai
（西日本ロボティクスセンター）
蔵多 正人 Masato Kurata
（西日本ロボティクスセンター）
岡本 邦宏 Kunihiro Okamoto
（西日本ロボティクスセンター）
小林 友和 Tadakazu Kobayashi
（安威川ダム J V）

概要
建設分野におけるロボット化に関連する技術開発は近年再び活発になり、各種の建設ロボットの提案や重機の自動・自律運転技術の開発が盛んになりつつある。その中で、災害復旧へのニーズから建設ロボットは主要技術となってきており、その中で重機の遠隔操縦は中核技術である。今回、筆者らは2017年度に実施した5Gを用いた重機の遠隔操縦試験の結果を踏まえ、実際の災害復旧を想定したシナリオに基づいて5Gを用いた遠隔操縦実験を実施し、施工効率の検証を行った。

本試験では5Gが大容量データの通信を可能とすることを生かし、映像の圧縮／伸張を行うコーデックの最適化による低遅延の実現や、遠隔操縦装置の改良などの新しい機構を開発導入し、2台の重機の遠隔操縦を行った。その結果、従来の遠隔操縦に対して30％の効率改善が試験で認められた。

Abstract
In recent years, the technical development related to robotization in the construction field has been becoming active, and proposals for various construction robots and development of automatic and autonomous driving technologies for heavy machinery are being triggered. Among them, the remote control of heavy equipment is the core technology of construction robots arising from the requirement of disaster recovery. In this case, based on the result of a remote-control field test of a heavy equipment using 5G conducted in 2017, we performed a remote-control experiment using 5G communication assuming actual disaster recovery, such as during a landslide, and verified the construction efficiency. In this field test, utilizing the fact that 5G can communicate a large volume of data, we developed a new mechanism to realize a short delay by optimizing the codec and improving the remote-control device. Thus, 30% efficiency improvement relative to that of the conventional remote control was achieved in the field test in 2018. This paper presents the outline and results of the above-mentioned experiment.

耐火被覆吹付け作業の自動化に関する基礎実験

Basic Test for Automated Spraying Process for Fire Protection

瀬川 翔史 Hirofumi Segawa
坂上 輝 Hajime Sakagami
池田 雄一 Yuichi Ikeda

概要
耐火被覆工事は、労働者が不足している建設工事の中でも特に労働者が求められている。そこで、耐火被覆吹付け作業の自動化を目指し、ロボットアームを用いた耐火被覆吹付けの基礎実験を行い、以下を確認した。(1) ロボットアームの動作の制御条件に対する被覆厚さおよびその均一性の関係性を把握した。(2) ロボットアームを用いて施工した耐火被覆には極端な不均一がなく、吹付け精度は良好であり、推奨はロックウール工業会の施工管理基準値を満足した。

Abstract
In the process of spraying of a fire protection coating, there is a strong demand for saving labor in construction because of the labor shortage. The authors performed a basic test for spraying of a fire protection coating using a manipulator with the objective of automating the fire protection coating process. Accordingly, the following conclusions were drawn: (1) A relationship between the coating thickness variation and the control condition of the manipulator movement was found. (2) The fireproof coating applied using the manipulator did not exhibit significant unevenness, and its specific gravity satisfied the construction management standard value.
環境工学実験棟の改修
Renewal of Environmental Engineering Laboratory

渡辺 充敏 Mitsutoshi Watanabe
後藤 哉 Satoru Goto
染川 大輔 Daisuke Somekawa
片岡 浩人 Hirot0 Kataoka

風洞装置外観（パース）
Appearance of Wind Tunnel (Perspective)

「タフショットクリート®」の開発と
現場適用事例
Development and Application of “Toughshotcrete®”

川西 貴士 Takashi Kawanishi
石見 嘉一 Yoshikazu Ishizeki
平田 弘隆 Takayoshi Hirata
富井 孝喜 Takayoshi Tomii
（同社土木本部）

壁面への吹付けの状況
Situation of Shotcrete on the wall
Technique of Forming Incombustible Wood Using a Metal Foil

Abstract

Recently, the utilization of wood for buildings is increasing. Because wood is a flammable material, its non-combustibility has long been a major issue, and various flame retardants have been employed. However, a flame retardant is manufactured by pressure-impregnating a water-soluble solution into wood. In a humid environment, the absorbed retardant on the wood surface appears as a white precipitate, decreasing the fire protection property. In this study, we examined a technology for making wood incombustible by a metal foil, without using a flame retardant. The non-combustibility was realized by pasting two layers of aluminum foil. In addition, this technology of making non-combustible wood with an aluminum foil can be applied to form non-combustible wood substrates, and it can be expected to be used in various applications.